【題目】如圖所示,ACABCD的一條對(duì)角線,過(guò)AC中點(diǎn)O的直線EF分別交ADBC于點(diǎn)E,F

1)求證:△AOE≌△COF

2)連接AFCE,當(dāng)EFAC時(shí),判斷四邊形AFCE的形狀,并說(shuō)明理由

【答案】(1)詳見解析;(2)是菱形;

【解析】

根據(jù)菱形判定定理:對(duì)角線互相垂直且平分的四邊形是菱形

1 證明:∵四邊形ABCD是平行四邊形,

ADBC,∴∠EAO=FCO,

OOA的中點(diǎn),

OA=OC,

在△AOE和△COF中,∠EAO=FCOOA=OCAOE=COF,

∴△AOE≌△COFASA);

2 EFAC時(shí),四邊形AFCE是菱形;

由(1)中△AOE≌△COF,得

AE=CF,OE=OF

∵OA=OC,EFAC

∴四邊形AFCE是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有20箱蘋果,以每箱25千克為標(biāo)準(zhǔn),超過(guò)的千克數(shù)用正數(shù)表示,不足的千克數(shù)用負(fù)數(shù)表示,結(jié)果記錄如表:

120箱蘋果中,最重的一箱比最輕的一箱重   kg;

2)與標(biāo)準(zhǔn)質(zhì)量相比,20箱蘋果總計(jì)超過(guò)或不足多少千克?

3)若蘋果每千克售價(jià)12元,則售出這20箱蘋果可獲得多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(背景知識(shí))

數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數(shù)軸上點(diǎn)、點(diǎn)表示的數(shù)分別為、,則、兩點(diǎn)之間的距離,線段的中點(diǎn)表示的數(shù)為.

(問(wèn)題情境)

如圖,數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為8,點(diǎn)從點(diǎn)出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒(.

(綜合運(yùn)用)

1)填空:

、兩點(diǎn)之間的距離________,線段的中點(diǎn)表示的數(shù)為__________.

②用含的代數(shù)式表示:秒后,點(diǎn)表示的數(shù)為____________;點(diǎn)表示的數(shù)為___________.

③當(dāng)_________時(shí),、兩點(diǎn)相遇,相遇點(diǎn)所表示的數(shù)為__________.

2)當(dāng)為何值時(shí),.

3)若點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn),點(diǎn)在運(yùn)動(dòng)過(guò)程中,線段的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)欲購(gòu)進(jìn)果汁飲料和碳酸飲料共50箱,果汁飲料毎箱進(jìn)價(jià)為55元,售價(jià)為63元;碳酸飲料毎箱進(jìn)價(jià)為36元,售價(jià)為42元;設(shè)購(gòu)進(jìn)果汁飲料x箱(x為正整數(shù)),且所購(gòu)進(jìn)的兩種飲料能全部賣出,獲得的總利潤(rùn)為W元(注,總利潤(rùn)=總售價(jià)﹣總進(jìn)價(jià)),

(1)設(shè)商場(chǎng)購(gòu)進(jìn)碳酸飲料y箱,直接寫出yx的函數(shù)關(guān)系式;

(2)求總利潤(rùn)W關(guān)于x的函數(shù)關(guān)系式;

(3)如果購(gòu)進(jìn)兩種飲料的總費(fèi)用不超過(guò)2000元,那么該商場(chǎng)如何進(jìn)貨才能獲利最多?并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD中,E,F(xiàn)分別是AB,CD的中點(diǎn),則圖中有( 。﹤(gè)平行四邊形.

A. 7個(gè) B. 8個(gè) C. 9個(gè) D. 10個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】[x]表示不超過(guò)x的最大整數(shù).如,[π]=3,[2]=2,[﹣2.1]=﹣3.則下列結(jié)論:

[﹣x]=﹣[x];

②若[x]=n,則x的取值范圍是n≤x<n+1;

③當(dāng)﹣1<x<1時(shí),[1+x]+[1﹣x]的值為12;

x=﹣2.75是方程4x﹣2[x]+5=0的唯一一個(gè)解.

其中正確的結(jié)論有_____(寫出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市城市居民用電收費(fèi)方式有以下兩種:

(甲)普通電價(jià):全天0.53元/度;

(乙)峰谷電價(jià):峰時(shí)(早8:00~晚21:00)0.56元/度;谷時(shí)(晚21:00~早8:00)0.36元/度.

估計(jì)小明家下月總用電量為200度,

⑴若其中峰時(shí)電量為50度,則小明家按照哪種方式付電費(fèi)比較合適?能省多少元?

⑵請(qǐng)你幫小明計(jì)算,峰時(shí)電量為多少度時(shí),兩種方式所付的電費(fèi)相等?

⑶到下月付費(fèi)時(shí), 小明發(fā)現(xiàn)那月總用電量為200度,用峰谷電價(jià)付費(fèi)方式比普通電價(jià)付費(fèi)方式省了14元,求那月的峰時(shí)電量為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】八(1)班同學(xué)到野外上數(shù)學(xué)活動(dòng)課,為測(cè)量池塘兩端AB的距離,設(shè)計(jì)了如下方案:

(Ⅰ)如圖5-1,先在平地上取一個(gè)可直接到達(dá)A、B的點(diǎn)C,連接AC、BC,并分別延長(zhǎng)ACDBCE,使DC=AC,EC=BC,最后測(cè)出DE的距離即為AB的長(zhǎng);

(Ⅱ)如圖5-2,先過(guò)B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn)使BC=CD,接著過(guò)DBD的垂線DE,交AC的延長(zhǎng)線于E,則測(cè)出DE的長(zhǎng)即為AB的距離.

閱讀后1回答下列問(wèn)題:

1)方案(Ⅰ)是否可行?說(shuō)明理由.

2)方案(Ⅱ)是否可行?說(shuō)明理由.

3)方案(Ⅱ)中作BFAB,EDBF的目的是 ;若僅滿足∠ABD=BDE90°, 方案(Ⅱ)是否成立? .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班為滿足同學(xué)們課外活動(dòng)的需求,要求購(gòu)排球和足球若干個(gè).已知足球的單價(jià)比排球的單價(jià)多30元,用500元購(gòu)得的排球數(shù)量與用800元購(gòu)得的足球數(shù)量相等.

(1)排球和足球的單價(jià)各是多少元?

(2)若恰好用去1200元,有哪幾種購(gòu)買方案?

查看答案和解析>>

同步練習(xí)冊(cè)答案