【題目】一夜之間,新冠病毒肺炎席卷全球。疫情期間,我國為保障大家的健康,各地采取了多種方式預防。其中,某地運用無人機規(guī)勸居民回家。如圖,無人機于空中 A 處測得某建筑頂部 B 處的仰角為 45°,測得該建筑底部 C 處的俯角為 17°.若無人機的飛行高度 AD 62m,求該建筑的高度 BC .(參考數(shù)據(jù):sin17°≈029,cos17°≈096tan17°≈031

【答案】該建筑的高度BC.

【解析】

AEBCE點,根據(jù)正切的定義求出AE,再利用等腰直角三角形的性質(zhì)求出BE,然后進一步根據(jù)圖形計算求解即可.

如圖所示,作AEBCE點,

則四邊形ADCE為矩形,

EC=AD=,

RtAEC中,tanEAC=,

RtAEC中,∠BAE=45°

BE=AE=,

BC=BE+EC=262,

即該建筑的高度BC

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為好玩三角形.若RtABC是好玩三角形,且∠C90°BC≥AC,則sinB_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校教學樓與實驗樓的水平間距米,在實驗樓頂部點測得教學樓頂部點的仰角是,底部點的俯角是,則教學樓的高度是____米(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點是反比例函數(shù)在第一象限圖像上的一個動點,連接,以 為長,為寬作矩形,且點在第四象限,隨著點的運動,點也隨之運動,但點始終在反比例函數(shù)的圖像上,則的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點M放在正方形ABCD的對角線AC(不與點A重合)上滑動,連結(jié)DM,做MN⊥DM,交直線ABN

(1)求證:DM=MN;

(2)若將(1)中的正方形變?yōu)榫匦,其余條件不變?nèi)鐖D,且DC=2AD,求MD:MN的值;

(3)在(2)中,若CD=nAD,當M滑動到CA的延長線上時(如圖3),請你直接寫出MDMN的比值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,正方形紙片ABCD邊長為2,折疊∠B和∠D,使兩個直角的頂點重合于對角線BD上的一點P,EFGH分別是折痕(圖2),設AE=x0x2),給出下列判斷:①x=時,EF+ABAC;②六邊形AEFCHG周長的值為定值;③六邊形AEFCHG面積為定值,其中正確的是( 。

A.①②B.①③C.D.②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線Ly=x+2x軸、y軸分別交于A、B兩點,在y軸上有一點N0,4),動點MA點以每秒1個單位的速度勻速沿x軸向左移動.

1)點A的坐標:_____;點B的坐標:_____;

2)求NOM的面積SM的移動時間t之間的函數(shù)關系式;

3)在y軸右邊,當t為何值時,NOMAOB,求出此時點M的坐標;

4)在(3)的條件下,若點G是線段ON上一點,連結(jié)MG,MGN沿MG折疊,點N恰好落在x軸上的點H處,求點G的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點DE⊙O上一點,且∠AED=45°

1)判斷CD⊙O的位置關系,并說明理由;

2)若⊙O半徑為4cmAE=6cm,求∠ADE的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某出租公司有若干輛同一型號的貨車對外出租,每輛貨車的日租金實行淡季、旺季兩種價格標準,旺季每輛貨車的日租金比淡季上漲.據(jù)統(tǒng)計,淡季該公司平均每天有輛貨車未出租,日租金總收入為元;旺季所有的貨車每天能全部租出,日租金總收入為元.

1)該出租公司這批對外出租的貨車共有多少輛?淡季每輛貨車的日租金多少元?

2)經(jīng)市場調(diào)查發(fā)現(xiàn),在旺季如果每輛貨車的日租金每上漲元,每天租出去的貨車就會減少輛,不考慮其它因素,每輛貨車的日租金上漲多少元時,該出租公司的日租金總收入最高?

查看答案和解析>>

同步練習冊答案