(2012•安岳縣模擬)如圖:直線y=ax+b分別與x軸,y軸相交于A、B兩點,與雙曲線y=
kx
,(x>0)相交于點P,PC⊥x軸于點C,點A的坐標為(-4,0),點B的坐標為(0,2),PC=3.
(1)求雙曲線對應的函數(shù)關系式;
(2)若點Q在雙曲線上,且QH⊥x軸于點H,△QCH與△AOB相似,請求出點Q的坐標.
分析:(1)根據(jù)兩個函數(shù)的解析式及其與x軸的交點坐標和表示出P點的坐標根據(jù)三角形的面積k值從而求出雙曲線的函數(shù)解析式.
(2)利用(1)我們可以求出△AOB各邊的長,然后利用三角形相似求出Q點的坐標就可以.
解答:解:(1)∵點A的坐標為(-4,0),點B的坐標為(0,2),
設y1=kx+b,
-4k+b=0
b=2
,
解得:
k=
1
2
b=2
,
故直線AB解析式為:y1=
1
2
x+2,
∵PC⊥x軸,PC=3,
∴3=
1
2
x+2,
解得:x=2,
故P(2,3),
則3=
K
2
,
解得k=6,
故雙曲線的解析式為:y=
6
x
;

(2)根據(jù)Q點在雙曲線上,設Q點的坐標為(m,
6
m
),
由A,B點的坐標可得:BO=2,AO=4,CO=2,
當△QCH∽△BAO時,
QH
BO
=
CH
AO
,
6
m
2
=
m-2
4
,
解得:m1=1+
13
,m2=1-
13
<0(不合題意舍去),
6
m
=
6
1+
13
=
13
-1
2

故Q點的坐標為:(
13
+1,
13
-1
2
);
當△QCH∽△ABO時,
CH
BO
=
QH
AO

m-2
2
=
6
m
4

解得:m1=-1<0(不合題意舍去),m2=3,
6
m
=
6
3
=2,
故Q點的坐標為:(3,2).
綜上所述:Q點的坐標為:(
13
+1,
13
-1
2
);(3,2).
點評:此題主要考查了反比例函數(shù)的綜合試題以及用待定系數(shù)法求函數(shù)的解析式、函數(shù)圖象中三角形面積的運用、相似三角形的判定等知識點.進行分類討論得出Q點坐標是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•安岳縣模擬)觀察圖中每一個正方形各頂點所標數(shù)字的規(guī)律,可知2012應標在( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•安岳縣模擬)如圖,在直角三角形ABC中∠BAC=90°,AB=3,M為BC上一點,連接AM.如果將三角形ABM沿直線AM翻折后,點B恰好與邊AC的中點D重合,那么點M到直線AC的距離為
2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•安岳縣模擬)如圖,在平行四邊形ABCD中,BE平分∠ABD交AD于點E,DF平分∠BDC交BC于點F.
(1)求證:BE=DF.
(2)若AB=BD,試判斷四邊形EBFD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•安岳縣模擬)在直角三角形ABC中,∠ACB=90°,AC=BC=1.過點B作直線EF⊥BC,點P為線段AB上一動點(與點A,B均不重合),過點P作MN∥BC并交AC于點M,交EF于點N,作PD⊥PC,交直線EF于點D.
(1)若點D在線段NB上(如圖1)求證:△PCM≌△DPN;
(2)若點D在線段NB延長線上(如圖2)且BP=BD,求AP的長;
(3)設AP=x,且P、C、D、B為頂點的四邊形的面積為y,請直接寫出y與x的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案