【題目】已知二次函數(shù)yax2bxc(a≠0)x軸交于點(x1,0)(x2,0),其中x1x2,方程ax2bxca0的兩根為m,n(mn),則下列判斷正確的是(  )

A. mnx1x2 B. mx1x2n C. x1x2mn D. b24ac≥0

【答案】B

【解析】a0時,如圖1,∵方程ax2bxca0的兩根為m,n

∴二次函數(shù)yax2bxc與直線ya的交點在x軸上方,其橫坐標分別為m,n,

mx1x2n

a0時,如圖2,∵方程ax2bxca0的兩根為m,n,

∴二次函數(shù)yax2bxc與直線ya的交點在x軸下方,其橫坐標分別為m,n

mx1x2n,

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有下列說法:如果一個數(shù)的立方根等于它本身,那么它一定是10無限小數(shù)都是無理數(shù);實數(shù)與數(shù)軸上的點一一對應(yīng);是分數(shù);近似數(shù)5.60所表示的準確數(shù)的范圍是:5.55x5.65.其中正確的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下面的有理數(shù)填在相應(yīng)的大括號里:15,012%,-300.15,-2.6,-128,,-6.4777……,中,

整數(shù)有:{ };

分數(shù)有:{ };

負有理數(shù):{ };

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,ACD沿AD折疊,使得點C落在斜邊AB上的點E處.

(1)求證:BDE∽△BAC;

(2)已知AC=6,BC=8,求線段AD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+2分別交x,y軸于點A、C,點P是該直線與反比例函數(shù)y=的圖象,在第一象限內(nèi)的交點,PB丄x軸,B為垂足,S△ABP=9.

(1)直接寫出點A的坐標_____;點C的坐標_____;點P的坐標_____;

(2)已知點Q在反比例函數(shù)y=的圖象上,其橫坐標為6,在x軸上確定一點M,使MP+MQ最。ūA糇鲌D痕跡),并求出點M的坐標;

(3)設(shè)點R在反比例函數(shù)y=的圖象上,且在直線PB的右側(cè),做RT⊥x軸,T為垂足,當△BRT與△AOC相似時,求點R的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在運動會徑賽中,甲、乙同時起跑,剛跑出200m,甲不慎摔倒,他又迅速地爬起來繼續(xù)投入比賽,若他們所跑的路程ym)與比賽時間xs)的關(guān)系如圖,有下列說法:①他們進行的是800m比賽;②乙全程的平均速度為6.4m/s;③甲摔倒之前,乙的速度快;④甲再次投入比賽后的平均速度為7.5m/s;⑤甲再次投入比賽后在距離終點300米時追上了乙.其中正確的個數(shù)有( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為體現(xiàn)社會對教師的尊重,910日教師節(jié)這一天上午,出租車司機小軍從紅星出租車公司出發(fā)在東西向的公路上免費接送老師,如果規(guī)定向東為正,向西為負,出租車的連續(xù)行程如下(單位:千米):,,,,,.(假定每次只接送一位老師,并且車上始終只有一位老師)

1)最后一名老師送到目的地時,小軍在什么位置?

2)離出發(fā)點最遠的這位老師在什么位置?

3)若汽車耗油量為0.3/千米,這天上午汽車共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,,把一塊含角的三角板的直角頂點放在的中點上(直角三角板的短直角邊為,長直角邊為),點上,點.

(1)求重疊部分的面積;

(2)如圖2,將直角三角板點按順時針方向旋轉(zhuǎn)30度,于點,于點.

①請說明:;

②在此條件下,與直角三角板重疊部分的面積會發(fā)生變化嗎?請說明理由,并求出重疊部分的面積.

(3)如圖3,將直角三角板點按順時針方向旋轉(zhuǎn)(),于點于點,則的結(jié)論仍成立嗎?重疊部分的面積會變嗎?(請直接寫出結(jié)論,不需要說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,點E、F分別在AB、CD上,且AECF.

(1)求證:△ADE≌△CBF;

(2)求證:四邊形DEBF為平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案