【題目】如圖,AB、CD為兩個建筑物,建筑物AB的高度為60米,從建筑物AB的頂點A點測得建筑物CD的頂點C點的俯角EAC為30°,測得建筑物CD的底部D點的俯角EAD為45°.

(1)求兩建筑物底部之間水平距離BD的長度;

(2)求建筑物CD的高度(結果保留根號).

【答案】(1)兩建筑物底部之間水平距離BD的長度為60米;

(2)建筑物CD的高度為(6020)米.

【解析】

試題(1)由題意得:BDAE,從而得到BAD=ADB=45°,再由BD=AB=60,求得兩建筑物底部之間水平距離BD的長度為60米;

(2)延長AE、DC交于點F,根據(jù)題意得四邊形ABDF為正方形,根據(jù)AF=BD=DF=60,在RtAFC中利用FAC=30°求得CF,然后即可求得CD的長.

試題解析:(1)根據(jù)題意得:BDAE,

∴∠ADB=EAD=45°,

∵∠ABD=90°,

∴∠BAD=ADB=45°,

BD=AB=60,

兩建筑物底部之間水平距離BD的長度為60米;

(2)延長AE、DC交于點F,根據(jù)題意得四邊形ABDF為正方形,

AF=BD=DF=60,

在RtAFC中,FAC=30°,

CF=AFtanFAC=60×=20,

FD=60,

CD=6020

建筑物CD的高度為(6020)米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】對于二次函數(shù)y= +1-2axa0),下列說法錯誤的是( 。

A. 時,該二次函數(shù)圖象的對稱軸為y

B. a時,該二次函數(shù)圖象的對稱軸在y軸的右側

C. 該二次函數(shù)的圖象的對稱軸可為x=1

D. x2時,y的值隨x的值增大而增大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知內(nèi)接于,是直徑,點上,,過點,垂足為,連接邊于點

1)求證:;

2)求證:

3)連接,設的面積為,求四邊形的面積(用含有的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙OBC是⊙O的直徑,弦AFBC于點E,∠CAF2B

1)求證:AEAC;

2)若⊙O的半徑為4,EOB的中點,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】老師隨機抽查了本學期學生讀課外書冊數(shù)的情況,繪制成條形圖(圖1)和不完整的扇形圖(圖2),其中條形圖被墨跡遮蓋了一部分.

(1)求條形圖中被遮蓋的數(shù),并寫出冊數(shù)的中位數(shù);

(2)在所抽查的學生中隨機選一人談讀書感想,求選中讀書超過5冊的學生的概率;

(3)隨后又補查了另外幾人,得知最少的讀了6冊,將其與之前的數(shù)據(jù)合并后,發(fā)現(xiàn)冊數(shù)的中位數(shù)沒改變,則最多補查了   人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】尺規(guī)作圖:過直線外一點作已知直線的垂線,已知:如圖(1),直線及外一點,求作的垂線,使它經(jīng)過點,小紅的做法如下:

①在直線上任取一點B,連接

②以為圓心,長為半徑作弧,交直線于點;

③分別以為圓心, 長為半徑作弧,兩弧相交于點;

④作直線,直線即為所求如圖(2),小紅的做題依據(jù)是(

A.四條邊都相等的四邊形是菱形;菱形的對角線互相垂直

B.直徑所對的圓周角是直角

C.直線外一點到這條直線上垂線段最短

D.同圓或等圓中半徑相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為鼓勵市民節(jié)約用氣,對居民管道天然氣實行兩檔階梯式收費,年用天然氣量310立方米及以下為第一檔;年用天然氣量超出310立方米為第二檔,某戶應交天然氣費(元)與年用天然氣量(立方米)的關系如圖所示,觀察圖像并回答問題:

1)求之間的函數(shù)解析式并寫出自變量的取值范圍;

2)嘉琪家2018年天然氣費為1029元,求嘉琪家2018年使用天然氣量是否超出310立方米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解中學生獲取信息的主要渠道,設置“A:報紙,B:電視,C:網(wǎng)絡,D:身邊的人,E:其他”五個選項(五項中必選且只能選一項)的調(diào)查問卷,先隨機抽取50名中學生進行該問卷調(diào)查,根據(jù)調(diào)查的結果繪制條形圖如圖,該調(diào)查的方式和圖中a的值分別是( )

A. 抽樣調(diào)查,24 B. 普查,24 C. 抽樣調(diào)查,26 D. 普查,26

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖ABC,AB=AC,E是線段BC延長線上一點,EDAB,垂足為D,ED交線段AC于點F,O在線段EF,O經(jīng)過C、E兩點,ED于點G.

(1)求證:AC是⊙O的切線;

(2)若∠E=30°,AD=1,BD=5,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案