【題目】如圖,正方形ABCD邊長為6,EBC的中點,連接AE,以AE為邊在正方形內(nèi)部作∠EAF=45°,邊于點,連接,則下列說法中:①;②;③tanAFE=3;④.正確的有( )

A.①②③B.②④C.①④D.②③④

【答案】D

【解析】

延長CBG,使BG=DF,連接AG,證明△ABG≌△ADF,即可證得AG=AF,∠DAF=BAG,再證明△AEG≌△AEF,根據(jù)全等三角形的對應邊相等即可得出結(jié)論.

證明:延長CBG,使BG=DF,連接AG.如圖所示:

∵四邊形ABCD是正方形,

AB=AD,∠ABE=D=90°

∴∠ABG=90°=D,

∵△ABG和△ADF中,

∴△ABG≌△ADFSAS),

AG=AF,∠1=2,

又∵∠EAF=45°,∠DAB=90°,

∴∠2+3=45°,

∴∠1+3=45°,

∴∠GAE=EAF=45°

在△AEG和△AEF中,

∴△AEG≌△AEFSAS),

GE=EF,

GE=BG+BE,DF=BG

EF=DF+BF,故②正確,

BE=EC=3,AB=6,

,

∴∠3≠30°,故①錯誤,

設(shè)DF=x,則EF=x+3,

RtEFC中,∵EF2=CF2+EC2,

∴(x+32=32+6-x2,

x=2,

DF=BG=2,

,故③正確,

,故④正確.

故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,,點、分別在邊、上.

1)若,求證:四邊形是平行四邊形;

2)若四邊形是菱形,求菱形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCDEF都是等腰直角三角形,∠ACB=EFD=90,DEF,的頂點EABC的斜邊AB的中點重合.將DEF繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段AC與線段EF相交于點Q,射線ED與射線BC相交于點P.

(1)求證:AEQ∽△BPE;

(2)求證:PE平分∠BPQ;

(3)AQ=2,AE=,求PQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年豬肉價格受非洲豬瘟疫情影響,有較大幅度的上升,為了解某地區(qū)養(yǎng)殖戶受非洲豬瘟疫情感染受災情況,現(xiàn)從該地區(qū)建檔的養(yǎng)殖戶中隨機抽取了部分養(yǎng)殖戶進行了調(diào)查(把調(diào)查結(jié)果分為四個等級:A級:非常嚴重;B級:嚴重;C級:一般;D級:沒有感染),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解決下列問題:

1)本次抽樣調(diào)查的養(yǎng)殖戶的總戶數(shù)是   ;把圖2條形統(tǒng)計圖補充完整.

2)若該地區(qū)建檔的養(yǎng)殖戶有1500戶,求非常嚴重與嚴重的養(yǎng)殖戶一共有多少戶?

3)某調(diào)研單位想從5戶建檔養(yǎng)殖戶(分別記為a,bc,d,e)中隨機選取兩戶,進一步跟蹤監(jiān)測病毒傳播情況,請用列表或畫樹狀圖的方法求出選中養(yǎng)殖戶e的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一枚均勻的正四面體,四個面上分別標有數(shù)字1,23,4,小紅隨機地拋擲一次,把著地一面的數(shù)字記為x;另有三張背面完全相同,正面上分別寫有數(shù)字2,-1,1的卡片,小亮將其混合后,正面朝下放置在桌面上,并從中隨機地抽取一張,把卡片正面上的數(shù)字記為y;然后他們計算出S=x+y的值.

(1)用樹狀圖或列表法表示出S的所有可能情況;

(2)分別求出當S=0S<2時的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新能源汽車環(huán)保節(jié)能,越來越受到消費者的喜愛.各種品牌相繼投放市場.一汽貿(mào)公司經(jīng)銷某品牌新能源汽車.去年銷售總額為5000萬元,今年1~5月份,每輛車的銷售價格比去年降低1萬元.銷售數(shù)量與去年一整年的相同.銷售總額比去年一整年的少20%,今年1~5月份每輛車的銷售價格是多少萬元?設(shè)今年1~5月份每輛車的銷售價格為x萬元.根據(jù)題意,列方程正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.

(1)求證:AF=DC;

(2)若ABAC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,CACB,∠ACBα.點P 是平面內(nèi)不與點A,C 重合的任意一點,連接AP,將線段AP 繞點P 逆時針旋轉(zhuǎn)α得到線段DP,連接AD,BDCP

1)猜想觀察:如圖1,當α60°時,的值是________,直線BD與直線CP相交所成的較小角的度數(shù)是________

2)類比探究:如圖2,當α90°時,請寫出的值及直線BD與直線CP相交所成的較小角的度數(shù),并就圖2的情形說明理由.

3)解決問題:如圖3,當α90°時,若點 E,F 分別是 CACB 的中點,點 P FE的延長線上,P,DC三點在同一直線上,ACBD相交于點M,DM2,求AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,點上的一個動點,連結(jié),作點關(guān)于的對稱點,且點落在矩形的內(nèi)部,連結(jié),,過點于點,設(shè),

1)求證:;

2)當點落在上時,用含的代數(shù)式表示的值.

查看答案和解析>>

同步練習冊答案