【題目】如圖,已知點(diǎn)A在反比例函數(shù)y =(x>0)的圖象上,過點(diǎn)A作AC⊥x軸,垂足是C,一次函數(shù)y =kx+b的圖象經(jīng)過點(diǎn)A,與y軸的正半軸交于點(diǎn)B,AC =OC =2OB.
(1)求點(diǎn)A的坐標(biāo);
(2)求一次函數(shù)的表達(dá)式,
【答案】(1)(2,2);(2)y=x+1
【解析】
(1)點(diǎn)A在反比例函數(shù)y =(x>0)的圖象上,AC =OC,則A點(diǎn)的橫縱坐標(biāo)相同,代入反比例函數(shù)y=求解即可;(2)根據(jù)AC =OC =2OB,求出B點(diǎn)坐標(biāo),再根據(jù)A、B的坐標(biāo)算出一次函數(shù)表達(dá)式即可.
(1)∵點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,AC⊥x軸,AC=OC,
∴AC·OC=4,則AC=OC=2,
∴點(diǎn)A的坐標(biāo)為(2,2).
(2)∵AC=OC=20B,
∴OB=1,所以B的坐標(biāo)為(0,1),
∴設(shè)AB直線解析式為y=kx+b,
∵點(diǎn)A的坐標(biāo)為(2,2),B的坐標(biāo)為(0,1),代入則有解得,k=,b=1,即y=x+1,
∴一次函數(shù)的表達(dá)式為y=x+1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與直線相交于,兩點(diǎn),且拋物線經(jīng)過點(diǎn).
求拋物線的解析式;
點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn)不與點(diǎn)A、點(diǎn)B重合,過點(diǎn)P作直線軸于點(diǎn)D,交直線AB于點(diǎn)E.
當(dāng)時(shí),求P點(diǎn)坐標(biāo);
是否存在點(diǎn)P使為等腰三角形?若存在請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在矩形ABCD中,AB=4,BC=6,點(diǎn)E為線段AB上一動(dòng)點(diǎn)(不與點(diǎn)A. 點(diǎn)B重合),先將矩形ABCD沿CE折疊,使點(diǎn)B落在點(diǎn)F處,CF交AD于點(diǎn)H.
(1)求證:△AEG∽△DHC;
(2)若折疊過程中,CF與AD的交點(diǎn)H恰好是AD的中點(diǎn)時(shí),求tan∠BEC的值;
(3)若折疊后,點(diǎn)B的對(duì)應(yīng)F落在矩形ABCD的對(duì)稱軸上,求此時(shí)AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,二次函數(shù) y=x2+2x+2k﹣2 的圖象與 x 軸有兩個(gè)交點(diǎn).
(1)求 k 的取值范圍;
(2)當(dāng) k 取正整數(shù)時(shí),請(qǐng)你寫出二次函數(shù) y=x2+2x+2k﹣2 的表達(dá)式,并求出此二次函數(shù)圖象與 x 軸的兩個(gè)交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將一張矩形紙片ABCD沿著對(duì)角線BD向上折疊,頂點(diǎn)C落到點(diǎn)E處,BE交AD于點(diǎn)F,AB=6cm,AD=8cm.
(1)求證:△BDF是等腰三角形;
(2)如圖2,過點(diǎn)D作DG∥BE,交BC于點(diǎn)G,連結(jié)FG交BD于點(diǎn)O.判斷四邊形FBGD的形狀,并說明理由.
(3)在(2)的條件下,求FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方方駕駛小汽車勻速地從A地行使到B地,行駛里程為480千米,設(shè)小汽車的行使時(shí)間為t(單位:小時(shí)),行使速度為v(單位:千米/小時(shí)),且全程速度限定為不超過120千米/小時(shí).
⑴求v關(guān)于t的函數(shù)表達(dá)式;
⑵方方上午8點(diǎn)駕駛小汽車從A出發(fā).
①方方需在當(dāng)天12點(diǎn)48分至14點(diǎn)(含12點(diǎn)48分和14點(diǎn))間到達(dá)B地,求小汽車行駛速度v的范圍.
②方方能否在當(dāng)天11點(diǎn)30分前到達(dá)B地?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2 + 1=0.
(1)若方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
(2)若方程兩實(shí)數(shù)根分別為x1,x2,且滿足,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OABC是邊長為1的正方形,OC與x軸正半軸的夾角為15°,點(diǎn)B在拋物線y=ax2(a<0)的圖象上,則a的值為( )
A. B. C. ﹣2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程:
(1)3x(x+3)=2(x+3)
(2)2x2﹣4x﹣3=0
(3)x2+4x+2=0
(4)(y+2)2﹣(3y﹣1)2=0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com