【題目】綜合題 1、如圖1,線段AB的端點(diǎn)在正方形網(wǎng)格的格點(diǎn)上,在圖1中找到格點(diǎn)C,使組成的△ABC的一個(gè)內(nèi)角α滿(mǎn)足tanα=2(找到兩個(gè)點(diǎn)C,全等的三角形算一種)
2、
(1)如圖1,線段AB的端點(diǎn)在正方形網(wǎng)格的格點(diǎn)上,在圖1中找到格點(diǎn)C,使組成的△ABC的一個(gè)內(nèi)角α滿(mǎn)足tanα=2(找到兩個(gè)點(diǎn)C,全等的三角形算一種).

(2)如圖2,在Rt△DEF中,∠DEF=90°,DE=1,sin∠F= .用兩塊全等的△DEF拼出一個(gè)平行四邊形,將拼得的平行四邊形畫(huà)在圖2網(wǎng)格(網(wǎng)格圖中小正方形邊長(zhǎng)均為1)中,畫(huà)出不同的兩種平行四邊形(全等的算一種),并寫(xiě)出相應(yīng)的周長(zhǎng).

【答案】
(1)解:如圖△ABC,△ABC′即為所求;


(2)解:有三種拼法:周長(zhǎng)分別為8,2+2 ,6+2


【解析】(1)根據(jù)已知tanα=2,因此畫(huà)出的直角三角形的兩直角邊存在2倍關(guān)系即可。
(2)先利用解直角三角形算出EF、DE的長(zhǎng),有三種拼法:分別以DE、DF、EF為所拼的平行四邊形的對(duì)角線,再分別求出周長(zhǎng)即可。
【考點(diǎn)精析】本題主要考查了平行四邊形的性質(zhì)和解直角三角形的相關(guān)知識(shí)點(diǎn),需要掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)直線ykx+6和直線y=(k+1x+6k是正整數(shù))及x軸圍成的三角形面積為Skk1,2,3,…,8),則S1+S2+S3++S8的值是( 。

A. B. C. 16D. 14

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到點(diǎn)C,使AB=AC,連結(jié)AC,過(guò)點(diǎn)D作DE⊥AC,垂足為E.

(1)求證:DC=BD;
(2)求證:DE為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC在x軸正半軸上,點(diǎn)A在第一象限,延長(zhǎng)AB交y軸負(fù)半軸于點(diǎn)D,延長(zhǎng)CA到點(diǎn)E,使AE=AC,雙曲線y= (x>0)的圖象過(guò)點(diǎn)E.若△BCD的面積為2 ,則k的值為( )

A.4
B.4
C.2
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,菱形紙片ABCD的邊長(zhǎng)為2,∠ABC=60°,翻折∠B,∠D,使點(diǎn)B,D兩點(diǎn)重合于對(duì)角線BD上一點(diǎn)P,EF,GH分別是折痕(如圖2).設(shè)AE=x(0<x<2),給出下列判斷:
①當(dāng)x=1時(shí),點(diǎn)P是菱形ABCD的中心;
②當(dāng)x= 時(shí),EF+GH>AC;
③當(dāng)0<x<2時(shí),六邊形AEFCHG面積的最大值是 ;
④當(dāng)0<x<2時(shí),六邊形AEFCHG周長(zhǎng)的值不變.
其中正確結(jié)論是 . (填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)B在線段AC上,點(diǎn)D在線段AB上.

1)如圖1,若AB=6cm,BC=4cmD為線段AC的中點(diǎn),求線段DB的長(zhǎng)度;

2)如圖2,若BD=AB=CD,E為線段AB的中點(diǎn),EC=12cm,求線段AC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C1:y=﹣ x2+bx+c的對(duì)稱(chēng)軸是x=2,且經(jīng)過(guò)點(diǎn)(6,0).

(1)求拋物線C1的解析式;
(2)將拋物線C1向下平移2個(gè)單位后得到拋物線C2 , 如圖,直線y=kx﹣2k+1交拋物線C2于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),交拋物線C2的對(duì)稱(chēng)軸于點(diǎn)C,M(xA , 3),xA表示點(diǎn)A橫坐標(biāo),求證:AC=AM;
(3)在(2)的條件下,請(qǐng)你參考(2)中的結(jié)論解決下列問(wèn)題:
①若CM=AM,求 的值;
②請(qǐng)你探究:在拋物線C2上是否存在點(diǎn)P,使得PO+PC取得最小值?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x、y的方程組,給出下列結(jié)論

是方程組的解;②無(wú)論a取何值,xy的值都不可能互為相反數(shù);

當(dāng)a=1時(shí)方程組的解也是方程x+y=4﹣a的解;④x,y的都為自然數(shù)的解有4對(duì)

其中正確的個(gè)數(shù)為(  

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD與正三角形AEF的頂點(diǎn)A重合,將△AEF繞其頂點(diǎn)A旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,當(dāng)BE=DF時(shí),∠BAE的大小可以是__

查看答案和解析>>

同步練習(xí)冊(cè)答案