如圖,已知PAC為⊙O的割線,連接PO交⊙O于B,PB=2,OP=7,PA=AC,則PA的長為(  )
A.
7
B.2
3
C.
14
D.3
2

設(shè)PA=x,延長PO交圓于D,
∵PA•PC=PB•PD,PB=2,OP=7,PA=AC,
∴x•2x=24,
∴x=2
3

故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,AB為⊙O的直徑,AD與⊙O相切于點(diǎn)A,DE與⊙O相切于點(diǎn)E,點(diǎn)C為DE延長線上一點(diǎn),且CE=CB.
(1)求證:BC為⊙O的切線;
(2)連接AE,AE的延長線與BC的延長線交于點(diǎn)G(如圖2所示),若AB=2
5
,AD=2,求線段BC和EG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,∠ABC=30°,AB=10,那么以A為圓心,6為半徑的⊙A與直線BC的位置關(guān)系是( 。
A.相交B.相切C.相離D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平行四邊ABCD中,O為AB上的一點(diǎn),連接OD、OC,以O(shè)為圓心,OB為半徑畫圓,分別交OD,OC于點(diǎn)P、Q.若OB=4,OD=6,∠ADO=∠A,
PQ
=2π,判斷直線DC與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知:如圖,以定線段AB為直徑作半圓O,P為半圓上任意一點(diǎn)(異于A、B),過點(diǎn)P作半圓O的切線分別交過A、B兩點(diǎn)的切線于D、C,連接OC、BP,過點(diǎn)O作OMCD分別交BC與BP于點(diǎn)M、N.下列結(jié)論:
①S四邊形ABCD=
1
2
AB•CD;
②AD=AB;
③AD=ON;
④AB為過O、C、D三點(diǎn)的圓的切線.
其中正確的個(gè)數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),CD⊥AB,垂足為D,點(diǎn)P在BA的延長線上,且PC是圓O的切線.
(1)求證:∠PCD=∠POC;
(2)若OD:DA=1:2,PA=8,求圓的半徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,Rt△ABC中,∠C=90°,AC=3,BC=4,以C為圓心,以
12
5
為半徑作⊙C,則⊙C與直線AB的位置關(guān)系是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,P點(diǎn)在AB的延長線上,弦CD⊥AB于E,∠PCE=2∠BDC.
(1)求證:PC是⊙O的切線;
(2)若AE:EB=2:1,PB=6,求弦CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AC為直徑的圓交AB于D,則AD的長為( 。
A.
9
5
B.
12
5
C.
16
5
D.4

查看答案和解析>>

同步練習(xí)冊答案