【題目】如圖,在平面直角坐標系中,直線與函數(shù)的圖象交于,兩點,且點的坐標為.
(1)求的值;
(2)已知點,過點作平行于軸的直線,交直線于點,交函數(shù)的圖象于點.
①當(dāng)時,求線段的長;
②若,結(jié)合函數(shù)的圖象,直接寫出的取值范圍.
【答案】(1);(2)①;②或
【解析】
(1)先把點A代入一次函數(shù)得到a的值,再把點A代入反比例函數(shù),即可求出k;
(2)①根據(jù)題意,先求出m的值,然后求出點C、D的坐標,即可求出CD的長度;
②根據(jù)題意,當(dāng)PC=PD時,點C、D恰好與點A、B重合,然后求出點B的坐標,結(jié)合函數(shù)圖像,即可得到m的取值范圍.
解:(1)把代入,得,
∴點A為(1,3),
把代入,得;
(2)當(dāng)時,點P為(2,0),如圖:
把代入直線,得:,
∴點C坐標為(2,4),
把代入,得:,
∴;
②根據(jù)題意,當(dāng)PC=PD時,點C、D恰好與點A、B重合,如圖,
∵,解得:或(即點A),
∴點B的坐標為(),
由圖像可知,當(dāng)時,有
點P在的左邊,或點P在的右邊取到,
∴或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】上周六上午點,小穎同爸爸媽媽一起從西安出發(fā)回安康看望姥姥,途中他們在一個服務(wù)區(qū)休息了半小時,然后直達姥姥家,如圖,是小穎一家這次行程中距姥姥家的距離(千米)與他們路途所用的時間(時)之間的函數(shù)圖象,請根據(jù)以上信息,解答下列問題:
(1)求直線所對應(yīng)的函數(shù)關(guān)系式;
(2)已知小穎一家出服務(wù)區(qū)后,行駛分鐘時,距姥姥家還有千米,問小穎一家當(dāng)天幾點到達姥姥家?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,AD=3,動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點距離之和PA+PB的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了了解在校學(xué)生對校本課程的喜愛情況,隨機調(diào)查了九年級學(xué)生對A,B,C,D,E五類校本課程的喜愛情況,要求每位學(xué)生只能選擇一類最喜歡的校本課程,根據(jù)調(diào)查結(jié)果繪制了如下的兩個統(tǒng)計圖.
請根據(jù)圖中所提供的信息,完成下列問題:
(1)本次被調(diào)查的學(xué)生的人數(shù)為 ;
(2)補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中,C類所在扇形的圓心角的度數(shù)為 ;
(4)若該中學(xué)有4000名學(xué)生,請估計該校喜愛C,D兩類校本課程的學(xué)生共有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化,開始上課時,學(xué)生的注意力逐步增強,中間有一段時間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實驗分析可知,學(xué)生的注意力指標數(shù)y隨時間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):
(1)開始上課后第五分鐘時與第三十分鐘時相比較,何時學(xué)生的注意力更集中?
(2)一道數(shù)學(xué)競賽題,需要講16分鐘,為了效果較好,要求學(xué)生的注意力指標數(shù)最低達到36,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生注意力達到所需的狀態(tài)下講解完這道題目?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,⊙O的半徑為r(r>0).給出如下定義:若平面上一點P到圓心O的距離d,滿足,則稱點P為⊙O的“隨心點”.
(1)當(dāng)⊙O的半徑r=2時,A(3,0),B(0,4),C(,2),D(,)中,⊙O的“隨心點”是 ;
(2)若點E(4,3)是⊙O的“隨心點”,求⊙O的半徑r的取值范圍;
(3)當(dāng)⊙O的半徑r=2時,直線y=- x+b(b≠0)與x軸交于點M,與y軸交于點N,若線段MN上存在⊙O的“隨心點”,直接寫出b的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知點,點在反比例函數(shù)的圖象上,軸于點連結(jié)交于點,若,則與的面積比為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形兩條對角線、交于,過任作一直線與邊,交于,,的垂直平分線與邊,交于,.設(shè)正方形的面積為,四邊形的面積為.
(1)求證:四邊形是正方形;
(2)若,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com