【題目】我們知道,在數(shù)軸上,點(diǎn)M,N分別表示數(shù)m,n則點(diǎn)M,N之間的距離為|m﹣n|.已知點(diǎn)A,B,C,D在數(shù)軸上分別表示數(shù)a,b,c,d,且|a﹣c|=|b﹣c|=|d﹣a|=1(a≠b),則線段BD的長(zhǎng)度為_____.
【答案】4.5或0.5
【解析】
由|a﹣c|=|b﹣c|=1可判斷點(diǎn)C在點(diǎn)A和點(diǎn)B之間,并且兩兩之間的距離為1,
再根據(jù)|d﹣a|=1可知A與D之間的距離為2.5,分情況討論D點(diǎn)的位置即可求BD.
解:∵|a﹣c|=|b﹣c|=1
∴點(diǎn)C在點(diǎn)A和點(diǎn)B之間
∵|d﹣a|=1
∴|d﹣a|=2.5
不妨設(shè)點(diǎn)A在點(diǎn)B左側(cè),如下圖所示,當(dāng)D在A的左側(cè)時(shí),
線段BD的長(zhǎng)為4.5
如圖下圖所示,當(dāng)D在B的右側(cè)時(shí),
線段BD的長(zhǎng)為0.5
故答案為:4.5或0.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)內(nèi)有一塊如圖所示的三角形空地ABC,計(jì)劃將這塊空地建成一個(gè)花園,以美化小區(qū)環(huán)境,預(yù)計(jì)花園每平方米造價(jià)為25元,小區(qū)修建這個(gè)花園需要投資多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列橫線上用含有,的代數(shù)式表示相應(yīng)圖形的面積.
(1)①________;②__________;③__________;④_________________.
(2)通過拼圖,你發(fā)現(xiàn)前三個(gè)圖形的面積與第四個(gè)圖形面積之間有什么關(guān)系?請(qǐng)用數(shù)學(xué)式子表示:________________________________________.
(3)利用(2)的結(jié)論計(jì)算1972+2×197×3+32的值.( 注意不利用以上結(jié)論不得分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)進(jìn)行登山比賽,圖中表示甲同學(xué)和乙同學(xué)沿相同的路線同時(shí)從山腳出發(fā)到達(dá)山頂過程中,各自行進(jìn)的路程隨時(shí)間變化的圖象,根據(jù)圖象中的有關(guān)數(shù)據(jù)回答下列問題:
(1)分別求出表示甲、乙兩同學(xué)登山過程中路程(千米)與時(shí)間(時(shí))的函數(shù)解析式;(不要求寫出自變量的取值范圍)
(2)當(dāng)甲到達(dá)山頂時(shí),乙行進(jìn)到山路上的某點(diǎn)處,求點(diǎn)距山頂?shù)木嚯x;
(3)在(2)的條件下,設(shè)乙同學(xué)從處繼續(xù)登山,甲同學(xué)到達(dá)山頂后休息1小時(shí),沿原路下山,在點(diǎn)處與乙相遇,此時(shí)點(diǎn)與山頂距離為1.5千米,相遇后甲、乙各自按原來的路線下山和上山,求乙到達(dá)山頂時(shí),甲離山腳的距離是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+2ax-3a的圖像與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右邊),與y軸交于點(diǎn)C.
(1)請(qǐng)直接寫出A、B兩點(diǎn)的坐標(biāo):A , B ;
(2)若以AB為直徑的圓恰好經(jīng)過這個(gè)二次函數(shù)圖像的頂點(diǎn).
①求這個(gè)二次函數(shù)的表達(dá)式;
②若P為二次函數(shù)圖像位于第二象限部分上的一點(diǎn),過點(diǎn)P作PQ平行于y軸,交直線BC于點(diǎn)Q.連接OQ、AQ,是否存在一個(gè)點(diǎn)P,使tan∠OQA=?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)求多項(xiàng)式4x2﹣3﹣6x與多項(xiàng)式﹣x2+2x+5的2倍的和.
(2)先化簡(jiǎn),再求值:,其中
(3)已知兩個(gè)多項(xiàng)式A,B,其中B=﹣2x2+5x﹣3,求A﹣B.小馬虎同學(xué)在計(jì)算時(shí),誤將A﹣B錯(cuò)看成了A+B,求得的結(jié)果為3x2﹣2x+10.請(qǐng)你幫助這位同學(xué)求出正確結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過A(,0),B(,0),C(0,2)三點(diǎn).
(1)求拋物線的解析式;
(2)在直線AC下方的拋物線上有一點(diǎn)D,使得△DCA的面積最大,求點(diǎn)D的坐標(biāo);
(3)設(shè)點(diǎn)M是拋物線的頂點(diǎn),試判斷拋物線上是否存在點(diǎn)H滿足?若存在,請(qǐng)求出點(diǎn)H的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,解答問題.
利用圖象法解一元二次不等式:x2-2x-3>0.
解:設(shè)y=x2-2x-3,則y是x的二次函數(shù).∵a=1>0,∴拋物線開口向上.
又∵當(dāng)y=0時(shí),x2-2x-3=0,解得x1=-1,x2=3.
∴由此得拋物線y=x2-2x-3的大致圖象如圖所示.
觀察函數(shù)圖象可知:當(dāng)x<-1或x>3時(shí),y>0.
∴x2-2x-3>0的解集是:x<-1或x>3.
(1)觀察圖象,直接寫出一元二次不等式:x2-2x-3<0的解集是 ;
(2)仿照上例,用圖象法解一元二次不等式:x2-1>0.(大致圖象畫在答題卡上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中考科目已經(jīng)發(fā)生變革,繼中考增加體育實(shí)驗(yàn)之后,從2019年開始河南中考開始增設(shè)生物和地理科目,針對(duì)于此學(xué)校教務(wù)處王老師負(fù)責(zé)調(diào)查學(xué)生對(duì)此變革是否有壓力,設(shè)置問題答案如下(A:大,B:一般,C:無(wú)),再將調(diào)查結(jié)果制成兩幅不完統(tǒng)計(jì)圖(如圖所示),請(qǐng)根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)本次調(diào)查中,王老師一共調(diào)查了 名學(xué)生;
(2)將條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了緩解學(xué)生壓力,王老師從被調(diào)查的A類和B類學(xué)生中分別選取一名學(xué)生進(jìn)行詳細(xì)心理調(diào)查,請(qǐng)用合適的方法恰好選中一名男生和一名學(xué)生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com