【題目】如圖, 已知拋物線y軸相交于C,與x軸相交于A、B,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0-1).

1)求拋物線的解析式;

2)點(diǎn)E是線段AC上一動點(diǎn),過點(diǎn)EDE⊥x軸于點(diǎn)D,連結(jié)DC,當(dāng)△DCE的面積最大時,求點(diǎn)D的坐標(biāo);

3)在直線BC上是否存在一點(diǎn)P,使△ACP為等腰三角形,若存在,求點(diǎn)P的坐標(biāo),若不存在,說明理由.

【答案】(1) y=x2-x-1;(2) D1,0);(3) P12.5-3.5)、P21-2)、P3,--1),P4--1).

【解析】

1)用待定系數(shù)法求得二次函數(shù)的解析式;

2)設(shè)點(diǎn)D的坐標(biāo)為(m,0), (0m2),由△ADE∽△AOC得,從而求得DE的長,通過△CDE的面積公式求得當(dāng)m=1時,△CDE的面積最大,即可求出點(diǎn)D的坐標(biāo);

3)求出直線BC的解析式,若三角形為等腰三角形,則有三種可能,利用勾股定理從而求得P點(diǎn)的坐標(biāo).

解:(1二次函數(shù)的圖像經(jīng)過點(diǎn)A20C(0,-1)

解得:b=c=1

二次函數(shù)的解析式為

2)設(shè)點(diǎn)D的坐標(biāo)為(m,0), 0m2

∴ OD=m∴AD=2-m△ADE∽△AOC得,

∴DE=

∴△CDE的面積=××m=

當(dāng)m=1時,△CDE的面積最大,此時點(diǎn)D的坐標(biāo)為(1,0

3)存在.

(1)知:二次函數(shù)的解析式為

設(shè)y=0解得:x1=2 x2=1,

點(diǎn)B的坐標(biāo)為(-1,0C0,-1

設(shè)直線BC的解析式為:y=kxb

解得:k=-1,b=-1

直線BC的解析式為:y=x1

Rt△AOC中,∠AOC=90°

OA=2 OC=1,由勾股定理得:AC=

點(diǎn)B(1,0) 點(diǎn)C0,-1),∴OB=OC ∠BCO=45°

當(dāng)以點(diǎn)C為頂點(diǎn)且PC=AC=時,

設(shè)P(k, k1),過點(diǎn)PPH⊥y軸于H,

∴∠HCP=∠BCO=45°,CH=PH=∣k∣,在Rt△PCH

k2+k2=解得k1=k2=

∴P1,-P2(-

A為頂點(diǎn),即AC=AP=

設(shè)P(k, k1),過點(diǎn)PPG⊥x軸于G

AG=∣2k∣ GP=∣k1∣

Rt△APG AG2PG2=AP2,(2k)2+(k1)2=5 解得:k1=1,k2=0()

∴P3(1, 2) (3)

3AP=CP,此時AP=CP

2x-2x+5=2x

-2x=-5x=2.5

代入BC方程,y=-3.5

因此P42.5-3.5

綜上所述,存在四點(diǎn):P12.5,-3.5)、P21,-2)、P3,--1),P4-,-1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,連接,將點(diǎn)作順時針方向旋轉(zhuǎn)得到重合),且點(diǎn)剛好落在的延長上,相交于點(diǎn)

1)求矩形重疊部分(如圖1中陰影部分)的面積;

2)將以每秒2的速度沿直線向右平移,如圖2,當(dāng)移動到點(diǎn)時停止移動.設(shè)矩形重疊部分的面積為,移動的時間為,請你直接寫出關(guān)于的函數(shù)關(guān)系式,并指出自變量的取值范圍;

3)在(2)的平移過程中,是否存在這樣的時間,使得成為等腰三角形?若存在,請你直接寫出對應(yīng)的的值,若不存在,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等腰直角三角形,∠ACB=90°,BC=AC,把ABC繞點(diǎn)A按順時針方向旋轉(zhuǎn)45°后得到AB’C’,若AB=2,則線段BC在上述旋轉(zhuǎn)過程中所掃過部分(陰影部分)的面積是___________ (結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一種折疊椅,忽略其支架等的寬度,得到他的側(cè)面簡化結(jié)構(gòu)圖,支架與坐板均用線段表示,若座板DF平行于地面MN,前支撐架AB與后支撐架AC分別與座板DF交于點(diǎn)E、D,現(xiàn)測得厘米, 厘米,

求椅子的高度即椅子的座板DF與地面MN之間的距離精確到1厘米

求椅子兩腳B、C之間的距離精確到1厘米參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ly=x,過點(diǎn)A(0,1)y軸的垂線交直線l于點(diǎn)B,過點(diǎn)B作直線l的垂線交y軸于點(diǎn)A1;過點(diǎn)A1y軸的垂線交直線l于點(diǎn)B1,過點(diǎn)B1作直線l的垂線交y軸于點(diǎn)A2;……按此作法繼續(xù)下去,則點(diǎn)A2020的坐標(biāo)為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前微信支付寶、共享單車網(wǎng)購給我們帶來了很多便利,初二數(shù)學(xué)小組在校內(nèi)對你最認(rèn)可的四大新生事物進(jìn)行了調(diào)查,隨機(jī)調(diào)查了人(每名學(xué)生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.

1)根據(jù)圖中信息求出=___________,=_____________;

2)請你幫助他們將這兩個統(tǒng)計圖補(bǔ)全;

3)根據(jù)抽樣調(diào)查的結(jié)果,請估算全校2000名學(xué)生種,大約有多少人最認(rèn)可微信這一新生事物?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,ACBC,以BC為直徑的⊙OAB于點(diǎn)D

1)求證:點(diǎn)DAB的中點(diǎn);

2)如圖2,過點(diǎn)DDEAC于點(diǎn)E,求證:DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線AC、BD交于點(diǎn)O,AE平分BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了落實(shí)黨的精準(zhǔn)扶貧政策,A、B兩城決定向C、D兩鄉(xiāng)運(yùn)送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為20/噸和25/噸;從B城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為15/噸和24/噸.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.

(1)A城和B城各有多少噸肥料?

(2)設(shè)從A城運(yùn)往C鄉(xiāng)肥料x噸,總運(yùn)費(fèi)為y元,求出最少總運(yùn)費(fèi).

(3)由于更換車型,使A城運(yùn)往C鄉(xiāng)的運(yùn)費(fèi)每噸減少a(0<a<6)元,這時怎樣調(diào)運(yùn)才能使總運(yùn)費(fèi)最少?

查看答案和解析>>

同步練習(xí)冊答案