【題目】已知關(guān)于x的一元二次方程

求證:無論m取何值,方程總有兩個不相等的實數(shù)根;

ab是這個一元二次方程的兩個根,求的最小值.

【答案】(1)證明見解析;(2)3.

【解析】

1)根據(jù)方程的系數(shù)結(jié)合根的判別式,可得出△=m2+40從而證出無論m取何值,原方程總有兩個不相等的實數(shù)根

2)由根與系數(shù)的關(guān)系可得出a+b=﹣[﹣(m+2],ab=m結(jié)合a2+b2=(a+b22ab解答.

1)在關(guān)于x的一元二次方程x2﹣(m+2x+m=0a=1,b=﹣(m+2),c=m

所以△=m2+4m+44m=m2+4,

無論m取何值,m2+40

所以,無論m取何值,方程總有兩個不相等的實數(shù)根;

2)因為ab是這個一元二次方程的兩個根,

所以a+b=﹣[﹣(m+2]=m+2ab=m,

所以a2+b2=(a+b22ab=(m+222m=m2+2m+4=(m+12+3

無論m為何值,(m+120,所以a2+b2的最小值為3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩校的學(xué)生人數(shù)基本相同,為了解這兩所學(xué)校學(xué)生的數(shù)學(xué)學(xué)業(yè)水平,在同一次測試中,從兩校各隨機抽取了30名學(xué)生的測試成績進行調(diào)查分析,其中甲校已經(jīng)繪制好了條形統(tǒng)計圖,乙校只完成了一部分.

甲校 93 82 76 77 76 89 89 89 83 87 88 89 84 92 87

89 79 54 88 92 90 87 68 76 94 84 76 69 83 92

乙校 84 63 90 89 71 92 87 92 85 61 79 91 84 92 92

73 76 92 84 57 87 89 88 94 83 85 80 94 72 90

(1)請根據(jù)乙校的數(shù)據(jù)補全條形統(tǒng)計圖;

(2)兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示,請補全表格;

平均數(shù)

中位數(shù)

眾數(shù)

甲校

83.4

87

89

乙校

83.2

(3)兩所學(xué)校的同學(xué)都想依據(jù)抽樣的數(shù)據(jù)說明自己學(xué)校學(xué)生的數(shù)學(xué)學(xué)業(yè)水平更好一些,

請為他們各寫出一條可以使用的理由;

甲校: .乙校:

(4)綜合來看,可以推斷出 校學(xué)生的數(shù)學(xué)學(xué)業(yè)水平更好一些,理由為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解中學(xué)課堂教學(xué)質(zhì)量,我市教體局去年對全市中學(xué)教學(xué)質(zhì)量進行調(diào)查方法是通過考試參加考試的為全市八年級學(xué)生,從中隨機抽取600名學(xué)生的英語成績進行分析對于這次調(diào)查,以下說法不正確的是( )

A. 調(diào)查方法是抽樣調(diào)查 B. 全市八年級學(xué)生是總體

C. 參加考試的每個學(xué)生的英語成績是個體 D. 被抽到的600名學(xué)生的英語成績是樣本

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】墊球是排球隊常規(guī)訓(xùn)練的重要項目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績.測試規(guī)則為連續(xù)接球10個,每墊球到位1個記1分.

運動員甲測試成績表

(1)寫出運動員甲測試成績的眾數(shù)和中位數(shù);

(2)在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰更合適?為什么? (參考數(shù)據(jù):三人成績的方差分別為、)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“城市發(fā)展,交通先行”,我市啟動了緩堵保暢的高架橋快速通道建設(shè)工程,建成后將大大提升道路的通行能力.研究表明,某種情況下,高架橋上的車流速度V(單位:千米/時)是車流密度x(單位:輛/千米)的函數(shù),且當(dāng)0<x≤28時,V=80;當(dāng)28<x≤188時,V是x的一次函數(shù).函數(shù)關(guān)系如圖所示.

(1)求當(dāng)28<x≤188時,V關(guān)于x的函數(shù)表達式;
(2)請你直接寫出車流量P和車流密度x之間的函數(shù)表達式;當(dāng)x為多少時,車流量P(單位:輛/時)達到最大,最大值是多少?
(注:車流量是單位時間內(nèi)通過觀測點的車輛數(shù),計算公式為:車流量=車流速度×車流密度)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩地相距200千米,一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),相向而行.已知客車的速度為60千米/小時,出租車的速度是100千米/小時.

(1)多長時間后兩車相遇?

(2)若甲乙兩地之間有相距50kmA、B兩個加油站,當(dāng)客車進入A站加油時,出租車恰好進入B站加油,求A加油站到甲地的距離.

(3)若出租車到達甲地休息10分鐘后,按原速原路返回.出租車能否在到達乙地或到達乙地之前追上客車?若不能,則出租車往返的過程中,至少提速為多少才能在到達乙地或到達乙地之前追上客車?是否超速(高速限速為120千米/小時)?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC、BD交于點O,且DEAC,CEBD.

(1)求證:四邊形OCED是菱形;

(2)若∠BAC=30°,AC=4,求菱形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AB∥CD.∠1=∠2,∠3=∠4,試說明AD∥BE.

解:∵AB∥CD(已知)

∴∠4=∠

∵∠3=∠4(已知)

∴∠3=∠

∵∠1=∠2(已知)

∴∠1+∠CAF=∠2+∠CAF(

即∠ =∠

∴∠3=∠

∴AD∥BE(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)營A種品牌的玩具,購進時間的單價是30元,但據(jù)市場調(diào)查,在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價為x元(x>40),請用含x的代數(shù)式表示該玩具的銷售量;
(2)若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于450件的銷售任務(wù),求商場銷售該品牌玩具獲得的最大利潤是多少?
(3)該商場計劃將(2)中所得的利潤的一部分資金采購一批B種玩具并轉(zhuǎn)手出售,根據(jù)市場調(diào)查并準(zhǔn)備兩種方案,方案①:如果月初出售,可獲利15%,并可用本和利再投資C種玩具,到月末又可獲利10%;方案②:如果只到月末出售可直接獲利30%,但要另支付他庫保管費350元,請問商場如何使用這筆資金,采用哪種方案獲利較多?

查看答案和解析>>

同步練習(xí)冊答案