已知:如圖,MN是⊙O的切線,切點(diǎn)為A,MN平行于弦CD,弦AB交CD于點(diǎn)E.
求證:AC2=AE•AB.
證明:連接AO并延長(zhǎng)交⊙O于點(diǎn)F,連接CF,CB,
∵M(jìn)N是⊙O的切線,
∴FA⊥MN,
∴∠MAC+∠CAF=90°,
∵AF過(guò)點(diǎn)O,
∴∠ACF=90°,
∴∠CAF+∠F=90°,
∴∠MAC=∠F
∵∠CAB=∠CAB
∴△ACE△ABC
AC
AB
=
AE
AC

∴AC2=AE•AB.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列說(shuō)法正確的是(  )
A.一個(gè)點(diǎn)可以確定一條直線
B.兩個(gè)點(diǎn)可以確定兩條直線
C.三個(gè)點(diǎn)可以確定一個(gè)圓
D.不在同一直線上的三點(diǎn)確定一個(gè)圓

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),AD垂直于過(guò)點(diǎn)C的直線,垂足為D,且AC平分∠BAD.
(1)求證:CD是⊙O的切線;
(2)若AC=2
5
,CD=2,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(q0fq•張家口一模)如4:⊙O與AB相切于點(diǎn)A,BO與⊙O交于點(diǎn)6,∠BA6=手0°,則∠B等于( 。
A.20°B.50°C.30°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在△ABC中,∠C=90°,∠B=30°,O為AB上一點(diǎn),AO=2,⊙O的半徑為
9
5
,⊙O與AC的位置關(guān)系是( 。
A.相交B.相離C.相切D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,點(diǎn)O在Rt△ABC的斜邊AB上,以O(shè)為圓心,OA長(zhǎng)為半徑的⊙O切BC于點(diǎn)D,且分別交AC、AB于點(diǎn)E、F,若AC=6,BC=6
3

(1)求⊙O的半徑;
(2)求弓形EDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

閱讀下面的材料:
如圖(1),在以AB為直徑的半圓O內(nèi)有一點(diǎn)P,AP、BP的延長(zhǎng)線分別交半圓O于點(diǎn)C、D.
求證:AP•AC+BP•BD=AB2
證明:連接AD、BC,過(guò)P作PM⊥AB,則∠ADB=∠AMP=90°,
∴點(diǎn)D、M在以AP為直徑的圓上;同理:M、C在以BP為直徑的圓上.
由割線定理得:AP•AC=AM•AB,BP•BD=BM•BA,
所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
當(dāng)點(diǎn)P在半圓周上時(shí),也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
(1)如圖(2)當(dāng)點(diǎn)P在半圓周外時(shí),結(jié)論AP•AC+BP•BD=AB2是否成立?為什么?
(2)如圖(3)當(dāng)點(diǎn)P在切線BE外側(cè)時(shí),你能得到什么結(jié)論?將你得到的結(jié)論寫(xiě)出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,在兩個(gè)同心圓中,大圓的弦AB切小圓于C點(diǎn),AB=12cm.求兩個(gè)圓之間的圓環(huán)面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

含30°角的直角三角板ABC中,∠A=30°.將其繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)α角(0°<α<120°且α≠90°),得到Rt△A'B'C,A'C邊與AB所在直線交于點(diǎn)D,過(guò)點(diǎn)D作DEA'B'交CB'邊于點(diǎn)E,連接BE.
(1)如圖1,當(dāng)A'B'邊經(jīng)過(guò)點(diǎn)B時(shí),α=______°;
(2)在三角板旋轉(zhuǎn)的過(guò)程中,若∠CBD的度數(shù)是∠CBE度數(shù)的m倍,猜想m的值并證明你的結(jié)論;
(3)設(shè)BC=1,AD=x,△BDE的面積為S,以點(diǎn)E為圓心,EB為半徑作⊙E,當(dāng)S=
1
3
S△ABC
時(shí),求AD的長(zhǎng),并判斷此時(shí)直線A'C與⊙E的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案