【題目】國家支持大學生創(chuàng)新辦實業(yè),提供小額無息貸款.學生王亮享受國家政策貸款36000元用于代理某品牌服裝銷售,已知該店代理的品牌服裝的進價為每件40元,該品牌服裝日銷售量y(件)與銷售價x(元/件)之間的關(guān)系可用圖中的一條線段(實線)來表示.該店應支付員工的工資為每人每天82元,每天還應支付其它費用為106元(不包含貸款).
(1)求日銷售量y(件)與銷售價x(元/件)之間的函數(shù)關(guān)系式;
(2)若該店暫不考慮償還貸款,當某天的銷售價為48元/件時,當天正好收支平衡(銷售額﹣成本=支出),求該店員工的人數(shù);
(3)若該店只有2名員工,則該店至少需要多少天能還清所有貸款?此時每件服裝的價格應定為多少元?

【答案】
(1)解:設y=kx+b(k≠0),

由題意得: ,

解得

∴y=﹣2x+140


(2)解:當x=48時,y=﹣2x+140=44.

設該店員工有a人,

則(48﹣40)×44=82a+106,

解得a=3.

答:該店員工有3人


(3)解:設每天的利潤為W(元),由題意,得

W=(x﹣40)y=(x﹣40)(﹣2x+140)

=﹣2(x﹣55)2+450.

設至少需要b天能還清所有貸款由題意,得

450b≥(82×2+106)b+36000.

解得b≥200.

答:該店至少需要200天能還清所有貸款,此時每件服裝的價格應定為55元


【解析】(1)利用待定系數(shù)法求解可得;(2)由售價依據(jù)(1)中函數(shù)解析式求得銷售量,繼而根據(jù)“(售價﹣進價)×銷售量=員工人數(shù)×每人每天工資+其他開支”列方程求解可得;(3)先依據(jù):總利潤=單件利潤×銷售量列出函數(shù)解析式,求得每天毛利潤的最大值,繼而根據(jù)利潤最大值×天數(shù)≥每天的總支出×天數(shù)+貸款錢數(shù),解不等式可得答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y=的圖象上.若點B在反比例函數(shù)y=的圖象上,則k的值為(  )

A.-4
B.4
C.-2
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知半徑為2的⊙O中,弦AC=2,弦AD=2 ,則∠COD的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點M(4,0),以點M為圓心,2為半徑的圓與x軸交于點A、B,已知拋物線y= x2+bx+c過點A和B,與y軸交于點C.

(1)求點C的坐標,并畫出拋物線的大致圖象.
(2)點P為此拋物線對稱軸上一個動點,求PC﹣PA的最大值.
(3)CE是過點C的⊙M的切線,E是切點,CE交OA于點D,求OE所在直線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)要求進行計算:
(1)解方程: =﹣1;
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在東西方向的海岸線上有A、B兩個港口,甲貨船從A港沿北偏東60°的方向以4海里/小時的速度出發(fā),同時乙貨船從B港沿西北方向出發(fā),2小時后相遇在點P處,問乙貨船每小時航行海里.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以AB為直徑的⊙O經(jīng)過點C,過點C作⊙O的切線交AB的延長線于點P,D是⊙O上于點,且 = ,弦AD的延長線交切線PC于點E,連接AC.
(1)求∠E的度數(shù);
(2)若⊙O的直徑為5,sinP= ,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BFDE為矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx經(jīng)過A(2,0),B(3,﹣3)兩點,拋物線的頂點為C,動點P在直線OB上方的拋物線上,過點P作直線PM∥y軸,交x軸于M,交OB于N,設點P的橫坐標為m.

(1)求拋物線的解析式及點C的坐標;
(2)當△PON為等腰三角形時,點N的坐標為;當△PMO∽△COB時,點P的坐標為;(直接寫出結(jié)果)
(3)直線PN能否將四邊形ABOC分為面積比為1:2的兩部分?若能,請求出m的值;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案