【題目】如圖,ADABC的角平分線,DE,DF分別是ABDACD的高,得到下面四個結(jié)論:①OA=OD;②ADEF;③當(dāng)DE=AE時,四邊形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正確的是(  )

A.②③B.②④C.①③④D.②③④

【答案】D

【解析】

根據(jù)角平分線性質(zhì)求出DE=DF,證△AED≌△AFD,推出AE=AF,再一一判斷即可.

解:根據(jù)已知條件不能推出OA=OD,∴①錯誤;
∵AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,
∴DE=DF,∠AED=∠AFD=90°,
在Rt△AED和Rt△AFD中,

∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,
∵AD平分∠BAC,
∴AD⊥EF,∴②正確;
∵∠BAC=90°,∠AED=∠AFD=90°,
∴四邊形AEDF是矩形,
∵AE=AF,
∴四邊形AEDF是正方形,∴③正確;
∵AE=AF,DE=DF,
∴AE2+DF2=AF2+DE2,∴④正確;
∴②③④正確,
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,經(jīng)過點A6,0)的直線ykx3與直線y=﹣x交于點B,點P從點O出發(fā)以每秒1個單位長度的速度向點A勻速運動.

1)求點B的坐標;

2)當(dāng)△OPB是直角三角形時,求點P運動的時間;

3)當(dāng)BP平分△OAB的面積時,直線BPy軸交于點D,求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在國慶節(jié)社會實踐活動中,鹽城某校甲、乙、丙三位同學(xué)一起調(diào)查了高峰時段鹽靖高速、鹽洛高速和沈海高速的車流量(每小時通過觀測點的汽車車輛數(shù)),三位同學(xué)匯報高峰時段的車流量情況如下:

甲同學(xué)說:鹽靖高速車流量為每小時2000輛.

乙同學(xué)說:沈海高速的車流量比鹽洛高速的車流量每小時多400輛.

丙同學(xué)說:鹽洛高速車流量的5倍與沈海高速車流量的差是鹽靖高速車流量的2倍.

請你根據(jù)他們所提供的信息,求出高峰時段鹽洛高速和沈海高速的車流量分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形OABC的三個頂點A、BC在以O為圓心的半圓上,過點CCDAB,分別交AB、AO的延長線于點D、E,AE交半圓O于點F,連接CF

1)判斷直線DE與半圓O的位置關(guān)系,并說明理由;

2)①求證:CF=OC

②若半圓O的半徑為12,求陰影部分的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像分別與x軸、y軸交于點A、B,以線段AB為腰在第二象限內(nèi)作等腰RtABC,∠BAC90°

1)直接寫出A、B兩點的坐標,并求線段AB的長;

2)求過B、C兩點的直線的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,邊長為1的正方形ABCD,AC 、DB交于點HDE平分ADBAC于點E聯(lián)結(jié)BE并延長,交邊AD于點F

1求證DC=EC

2求△EAF的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將正整數(shù)按一定規(guī)律排列如下表:

平移一個陰影方框(如表所示),被這個陰影方框覆蓋住的三個數(shù)的和可以是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的是常見的工具人字梯,量得人字梯的一側(cè)OC=OD=2.5

1CD=1.4,求梯子頂端O離地面的高度;

2)《建筑施工高處作業(yè)安全技術(shù)規(guī)范》規(guī)定:使用人字梯,上部夾角(AOB)35°~45°為宜,鉸鏈必須牢固并應(yīng)有可靠的拉撐措施.如圖,小明在人字梯的一側(cè)AB處系上一根繩子確保用梯安全,他測得OA=OB=2A、B處打結(jié)各需要0.4米的繩子,請你幫小明計算一下他需要的繩子的長度應(yīng)該在什么范圍內(nèi).(結(jié)果精確到0.1,參考數(shù)據(jù):sin17.5°≈0.30cos17.5°≈0.95,tan17. °5≈0.32sin22.5°≈0.38,cos22.5°≈0.92tan22.5°≈0.41)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】身高1.65米的兵兵在建筑物前放風(fēng)箏,風(fēng)箏不小心掛在了樹上.在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點B處,風(fēng)箏掛在建筑物上方的樹枝點G處(點G在FE的延長線上).經(jīng)測量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風(fēng)箏所在點G與建筑物頂點D及風(fēng)箏線在手中的點A在同一條直線上,點A距地面的高度AB=1.4米,風(fēng)箏線與水平線夾角為37°.

(1)求風(fēng)箏距地面的高度GF;

(2)在建筑物后面有長5米的梯子MN,梯腳M在距墻3米處固定擺放,通過計算說明:若兵兵充分利用梯子和一根米長的竹竿能否觸到掛在樹上的風(fēng)箏?

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

同步練習(xí)冊答案