,(3)估計(jì)該校2450名學(xué)生中周末手機(jī)使用時(shí)間小于2小時(shí)的人數(shù).">

【題目】某中學(xué)為了了解學(xué)生對手機(jī)的依賴程度,開展了一次“學(xué)生周末手機(jī)使用時(shí)間”抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下兩種不完整的統(tǒng)計(jì)圖表.

組別

周末手機(jī)使用時(shí)間

人數(shù)

20

22

10

8

請根據(jù)圖表信息解答下列問題:

(1)本次抽樣,共調(diào)查了 人;

(2)扇形統(tǒng)計(jì)圖中“”所對應(yīng)的圓心角的度數(shù)是/span>

(3)估計(jì)該校2450名學(xué)生中周末手機(jī)使用時(shí)間小于2小時(shí)的人數(shù).

【答案】(1)100;(2);(3)該校周末使用手機(jī)時(shí)間小于2小時(shí)的學(xué)生有1470人.

【解析】

(1)由等級C的人數(shù)除以占的百分比,得出調(diào)查總?cè)藬?shù)即可,進(jìn)而確定出等級B與等級D的人數(shù),進(jìn)而求出mn的值;

(2)D占的百分比,乘以360即可得到結(jié)果;

(3)根據(jù)題意列式計(jì)算即可得到結(jié)論.

(1)22÷22%100人,

答:本次抽樣,共調(diào)查了100人,

故答案為:100;

(2)扇形統(tǒng)計(jì)圖中“D”所對應(yīng)的圓心角的度數(shù)是×360°=36°,

故答案為:36°;

(3)m100×40%40人,

2450×1715人,

答:估計(jì)該校2450名學(xué)生中,周末手機(jī)使用時(shí)間小于2小時(shí)的人數(shù)為1715人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,延長至點(diǎn),使,連接,以為直角邊在左側(cè)作等腰三角形,其中,連接.

1)求證:;

2)若,求的長.

3有何位置關(guān)系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD為平行四邊形,延長AD到E,使DE=AD連接EB,ECDB添加一個(gè)條件,不能使四邊形DBCE成為矩形的是( )

A)AB=BE BBEDC CADB=90° DCEDE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在4×4的方格紙中,ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上.

1)在圖1中,畫出一個(gè)與ABC成中心對稱的格點(diǎn)三角形;

2)在圖2中,畫出一個(gè)與ABC成軸對稱且與ABC有公共邊的格點(diǎn)三角形;

3)在圖3中,畫出ABC繞著點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后的三角形;

4)在圖4中,畫出所有格點(diǎn)BCD,使BCD為等腰直角三角形,且SBCD=4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D、E分別是等邊三角形ABC的邊BC、AC上的點(diǎn),連接AD、BE交于點(diǎn)O,且ABD≌△BCE

1)若AB=3,AE=2,則BD= ;

2)若∠CBE=15°,則∠AOE= ;

3)若∠BAD=a,猜想∠AOE的度數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD,C=60°,M、N分別是ADBC的中點(diǎn),BC=2CD.

(1)求證四邊形MNCD是平行四邊形

(2)求證BDMN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)某酒廠每天生產(chǎn)A,B兩種品牌的白酒共600瓶,A,B兩種品牌的白酒每瓶的成本和利潤如下表:設(shè)每天生產(chǎn)A種品牌白酒x瓶,每天獲利y元.

1)請寫出y關(guān)于x的函數(shù)關(guān)系式;

2)如果該酒廠每天至少投入成本26400元,那么每天至少獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是半徑為2的⊙O的直徑,點(diǎn)A在⊙O上,∠AMN=30°,點(diǎn)B為劣弧AN的中點(diǎn).點(diǎn)P是直徑MN上一動(dòng)點(diǎn),則PAPB的最小值為(  )

A. 4 B. 2 C. 4 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線AC、BD交于點(diǎn)O.MAD中點(diǎn),連接CMBD于點(diǎn)N,且ON=1.

(1)求BD的長;

(2)若DCN的面積為2,求四邊形ABNM的面積.

查看答案和解析>>

同步練習(xí)冊答案