【題目】代數(shù)式ax2+bx+c(a≠0,a,b,c是常數(shù))中,x與ax2+bx+c的對(duì)應(yīng)值如下表:
x | ﹣1 | ﹣ | 0 | 1 | 2 | 3 | |||
ax2+bx+c | ﹣2 | ﹣ | 1 | 2 | 1 | ﹣ | ﹣2 |
請(qǐng)判斷一元二次方程ax2+bx+c=0(a≠0,a,b,c是常數(shù))的兩個(gè)根x1 , x2的取值范圍是下列選項(xiàng)中的( )
A.﹣ <x1<0, <x2<2
B.﹣1<x1<﹣ ,2<x2<
C.﹣ <x1<0,2<x2<
D.﹣1<x1<﹣ , <x2<2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長為6的正六邊形ABCDEF的對(duì)稱中心與原點(diǎn)O重合,點(diǎn)A在x軸上,點(diǎn)B在反比例函數(shù)y=位于第一象限的圖象上,則k的值為( )
A.9
B.9
C.3
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AD∥BC,AB∥CD,E為射線BC上一點(diǎn),AE平分∠BAD.
(1)如圖1,當(dāng)點(diǎn)E在線段BC上時(shí),求證:∠BAE=∠BEA.
(2)如圖2,當(dāng)點(diǎn)E在線段BC延長線上時(shí),連接DE,若∠ADE=3∠CDE,∠AED=60°.
①求證∠ABC=∠ADC;
②求∠CED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平面直角坐標(biāo)系中,A.B兩點(diǎn)的坐標(biāo)分別為(﹣2,2),(1,8),
(1)求△ABO的面積.
(2)若y軸上有一點(diǎn)M,且△MAB的面積為10.求M點(diǎn)的坐標(biāo).
(3)如圖,把直線AB以每秒2個(gè)單位的速度向右平移,運(yùn)動(dòng)t秒鐘后,直線AB過點(diǎn)F(0,﹣2),此時(shí)A點(diǎn)的坐標(biāo)為 ,B點(diǎn)的坐標(biāo)為 ,過點(diǎn)A作AE⊥y軸于點(diǎn)E,過點(diǎn)B作BD⊥y軸于點(diǎn)D,請(qǐng)根據(jù)S△FBD=S△FAE+S梯形ABDE,求出滿足條件的運(yùn)動(dòng)時(shí)間t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是網(wǎng)格圖,每個(gè)小正方形的邊長均為1.△ABC它在坐標(biāo)平面內(nèi)平移,得到△PEF,點(diǎn)A平移后落在點(diǎn)P的位置上.
(1)請(qǐng)你在圖中畫出△PEF,并寫出頂點(diǎn)P、E、F的坐標(biāo);
(2)說出△PEF是由△ABC分別經(jīng)過怎樣的平移得到的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,不能判斷四邊形ABCD是平行四邊形的是( )
A.AB=DC,AD=BCB.AB∥DC,AD∥BC
C.AB∥DC,AD=BCD.OA=OC,OB=OD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖,對(duì)稱軸為x=1.若關(guān)于x的一元二次方程x2+bx﹣t=0(為實(shí)數(shù))在﹣1<x<4的范圍內(nèi)有解,則t的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a=2019x+2018,b=2019x+2019,c=2019x+2020.則多項(xiàng)式a2+b2+c2﹣ab﹣bc﹣ac的值為( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,拋物線與x軸交點(diǎn)坐標(biāo)為A(1,0),C(-3,0),
(1)若已知頂點(diǎn)坐標(biāo)D為(-1,4)或B點(diǎn)(0,3),選擇適當(dāng)方式求拋物線的解析式.
(2)若直線DH為拋物線的對(duì)稱軸,在(1)的基礎(chǔ)上,求線段DK的長度,并求△DBC的面積.
(3)將圖(2)中的對(duì)稱軸向左移動(dòng),交x軸于點(diǎn)p(m,0)(-3<m<-1),與線段BC、拋物線的交點(diǎn)分別為點(diǎn)K、Q,用含m的代數(shù)式表示QK的長度,并求出當(dāng)m為何值時(shí),△BCQ的面積最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com