【題目】在數(shù)學(xué)課上,老師提出如下問題:尺規(guī)作圖:確定圖1所在圓的圓心.

已知:

求作:所在圓的圓心

曈曈的作法如下:如圖2,

1)在上任意取一點(diǎn),分別連接;

2)分別作弦的垂直平分線,兩條垂直平分線交于點(diǎn).點(diǎn)就是所在圓的圓心.

老師說:曈曈的作法正確.

請你回答:曈曈的作圖依據(jù)是_____

【答案】①線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等②圓的定義(到定點(diǎn)的距離等于定長的點(diǎn)的軌跡是圓)

【解析】

1)在上任意取一點(diǎn),分別連接;

2)分別作弦的垂直平分線,兩條垂直平分線交于點(diǎn).點(diǎn)就是所在圓的圓心.

解:根據(jù)線段的垂直平分線的性質(zhì)定理可知:

所以點(diǎn)所在圓的圓心(理由①線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等②圓的定義(到定點(diǎn)的距離等于定長的點(diǎn)的軌跡是圓):)

故答案為①線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等②圓的定義(到定點(diǎn)的距離等于定長的點(diǎn)的軌跡是圓)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)O為正六邊形對角線的交點(diǎn),機(jī)器人置于該正六邊形的某頂點(diǎn)處,柱柱同學(xué)操控機(jī)器人以每秒1個(gè)單位長度的速度在圖1中給出線段路徑上運(yùn)行,柱柱同學(xué)將機(jī)器人運(yùn)行時(shí)間設(shè)為t秒,機(jī)器人到點(diǎn)A的距離設(shè)為y,得到函數(shù)圖象如圖2,通過觀察函數(shù)圖象,可以得到下列推斷:①該正六邊形的邊長為1;②當(dāng)t3時(shí),機(jī)器人一定位于點(diǎn)O;③機(jī)器人一定經(jīng)過點(diǎn)D;④機(jī)器人一定經(jīng)過點(diǎn)E;其中正確的有(

A.①④B.①③C.①②③D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】明朝的數(shù)學(xué)家程大位在《算法統(tǒng)宗》中有一道古詩趣題:甲趕群羊逐草茂,乙拽只羊隨其后,戲問甲及一百否?甲云所曰無差謬;若得這般一群羊,再添半群小半群,得你一只來方湊,玄機(jī)妙算誰猜透?其大意是:甲趕一群羊去放,乙也牽著一只羊跟在甲的后面.乙問甲:你的這群羊有沒有一百只呢?甲說:我再得這樣的一群羊,再得這群羊的一半,還得這群羊的四分之一,最后湊上你的這只羊,正好是一百只.”問甲原有多少只羊?設(shè)甲原有x只羊,根據(jù)題意,可列方程為_________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)函數(shù)學(xué)習(xí)中積累的知識與經(jīng)驗(yàn),李老師要求學(xué)生探究函數(shù)y=+1的圖象.同學(xué)們通過列表、描點(diǎn)、畫圖象,發(fā)現(xiàn)它的圖象特征,請你補(bǔ)充完整.

(1)函數(shù)y=+1的圖象可以由我們熟悉的函數(shù)   的圖象向上平移   個(gè)單位得到;

(2)函數(shù)y=+1的圖象與x軸、y軸交點(diǎn)的情況是:   ;

(3)請你構(gòu)造一個(gè)函數(shù),使其圖象與x軸的交點(diǎn)為(2,0),且與y軸無交點(diǎn),這個(gè)函數(shù)表達(dá)式可以是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+ax+2a+1的圖象經(jīng)過點(diǎn)M(2,-3)。

(1)求二次函數(shù)的表達(dá)式;

(2)若一次函數(shù)y=kx+b(k≠0)的圖象與二次函數(shù)y=x2+ax+2a+1的圖象經(jīng)過x軸上同一點(diǎn),探究實(shí)數(shù)k,b滿足的關(guān)系式;

(3)將二次函數(shù)y=x2+ax+2a+1的圖象向右平移2個(gè)單位,若點(diǎn)P(x0,m)和Q(2,n)在平移后的圖象上,且m>n,結(jié)合圖象求x0的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC10,BD9,則△ADE的周長為( 。

A. 19B. 20C. 27D. 30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形ABCADBC邊上的高線,且有AC上有一點(diǎn)E,并且滿足AEEC23,則tanADE的值是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對于任意三點(diǎn)A,B,C,給出如下定義:

如果矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,BC三點(diǎn)都在矩形的內(nèi)部或邊界上,則稱該矩形為點(diǎn)A,BC的覆蓋矩形.點(diǎn)A,BC的所有覆蓋矩形中,面積最小的矩形稱為點(diǎn)AB,C的最優(yōu)覆蓋矩形.例如,下圖中的矩形A1B1C1D1,A2B2C2D2AB3C3D3都是點(diǎn)A,B,C的覆蓋矩形,其中矩形AB3C3D3是點(diǎn)A,B,C的最優(yōu)覆蓋矩形.

1)已知A(﹣23),B5,0),Ct,﹣2).

當(dāng)t2時(shí),點(diǎn)A,B,C的最優(yōu)覆蓋矩形的面積為 ;

若點(diǎn)A,B,C的最優(yōu)覆蓋矩形的面積為40,求直線AC的表達(dá)式;

2)已知點(diǎn)D1,1).Em,n)是函數(shù)yx0)的圖象上一點(diǎn),⊙P是點(diǎn)OD,E的一個(gè)面積最小的最優(yōu)覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了改善寄宿制學(xué)校學(xué)生的居住條件,某市財(cái)政局準(zhǔn)備給部分學(xué)校加裝空調(diào).經(jīng)市場調(diào)研發(fā)現(xiàn):購買1臺(tái)種型號的空調(diào)和2臺(tái)種型號的空調(diào)共需資金6400元;購買2臺(tái)型空調(diào)和3臺(tái)型空調(diào)共需資金10600.

1)求,兩種型號的空調(diào)單價(jià)各是多少元;

2)現(xiàn)計(jì)劃購進(jìn),兩種型號的空調(diào)共200臺(tái),其中型空調(diào)為臺(tái),并且要求公司15日內(nèi)(含15日)完成安裝調(diào)試.公司承諾:若型空調(diào)不大于75臺(tái),則型空調(diào)一定能保證15天內(nèi)完成安裝與調(diào)試,同時(shí)型空調(diào)每天可以完成10臺(tái)的安裝與調(diào)試;價(jià)格方面,當(dāng)購買型空調(diào)不少于60臺(tái)時(shí),公司給予型空調(diào)7折優(yōu)惠;當(dāng)購買型空調(diào)大于140臺(tái)時(shí),公司給予型空調(diào)8折優(yōu)惠.若既能保證如期完成安裝調(diào)試又能使花費(fèi)資金最少,應(yīng)購買,兩種型號的空調(diào)各多少臺(tái)?

查看答案和解析>>

同步練習(xí)冊答案