【題目】如圖,AB是⊙O的直徑,弦CD垂直平分OA,垂足為點(diǎn)M,連接并延長CO交⊙O于點(diǎn)E,分別連接DE,BE,DB,其中∠EDB=30°,∠CDE的平分線DN交CE于點(diǎn)G,交⊙O于點(diǎn)N,延長CE至點(diǎn)F,使FG=FD.
(1)求證:DF是⊙O的切線;
(2)若⊙O半徑r為8,求線段DB,BE與劣弧DE所圍成的陰影部分的面積.
【答案】(1)證明見解析;(2)線段DB,BE與劣弧DE所圍成的陰影部分的面積是.
【解析】
(1)連接OD,分別求∠ODN=45°-30°=15°,和∠FDG=∠FGD=75°,相加可得結(jié)論;
(2)先證明DE∥AB,S△DOE=S△ODE,所以S陰影=S扇形ODE;根據(jù)扇形面積公式可得結(jié)論.
(1)證明:連接OD,
∵CD垂直平分OA,
∴OM=OA=OD,
∴∠ODC=30°,
∵CE為⊙O的直徑,
∴∠CDE=90°,
∵DN平分∠CDE,
∴∠CDN=45°,
∴∠ODN=45°﹣30°=15°,
∵OD=OC,
∴∠DCO=∠ODC=30°,
∴∠FGD=45°+30°=75°,
∵FD=FG,
∴∠FDG=∠FGD=75°,
∴∠ODF=∠ODN+∠FDG=15°+75°=90°,
∴DF是⊙O的切線;
(2)∵∠EDB=30°,
∴∠EOB=60°,
Rt△CDE中,∠DEC=60°,
∴∠DEC=∠EOB=60°,
∴DE∥AB,
∴S△DOE=S△ODE,
∴S陰影=S扇形ODE=.
答:線段DB,BE與劣弧DE所圍成的陰影部分的面積是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于點(diǎn)E,連CD分別交AE,AB于點(diǎn)F,G,過點(diǎn)A作AH⊥CD交BD于點(diǎn)H.則下列結(jié)論:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正確結(jié)論的個數(shù)為( 。
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某日的錢塘江觀潮信息如表:
按上述信息,小紅將“交叉潮”形成后潮頭與乙地之間的距離(千米)與時間(分鐘)的函數(shù)關(guān)系用圖3表示,其中:“11:40時甲地‘交叉潮’的潮頭離乙地12千米”記為點(diǎn),點(diǎn)坐標(biāo)為,曲線可用二次函數(shù)(,是常數(shù))刻畫.
(1)求的值,并求出潮頭從甲地到乙地的速度;
(2)11:59時,小紅騎單車從乙地出發(fā),沿江邊公路以千米/分的速度往甲地方向去看潮,問她幾分鐘后與潮頭相遇?
(3)相遇后,小紅立即調(diào)轉(zhuǎn)車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過乙地后均勻加速,而單車最高速度為千米/分,小紅逐漸落后,問小紅與潮頭相遇到落后潮頭1.8千米共需多長時間?(潮水加速階段速度,是加速前的速度).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,垂直平分,分別交、于點(diǎn)、,垂直平分,分別交,于點(diǎn)、.
⑴如圖①,若,求的度數(shù);
⑵如圖②,若,求的度數(shù);
⑶若,直接寫出用表示大小的代數(shù)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們經(jīng)濟(jì)收入的不斷提高,汽車已越來越多地進(jìn)入到各個家庭.某大型超市為緩解停車難問題,建筑設(shè)計師提供了樓頂停車場的設(shè)計示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標(biāo)志,以便告知車輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)P是線段AD上一動點(diǎn),O為BD的中點(diǎn),PO的延長線交BC于點(diǎn)Q。
(1)求證:OP=OQ;
(2)若AD=8cm,AB=6cm,P從點(diǎn)A出發(fā),以1cm/秒的速度向點(diǎn)D運(yùn)動(不與點(diǎn)D重合),設(shè)點(diǎn)P運(yùn)動時間為t秒,請用t表示PD的長;并求當(dāng)t為何值時,四邊形PBQD是菱形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,E為AC上一點(diǎn),且AE=BC,過點(diǎn)A作AD⊥CA,垂足為A,且AD=AC,AB、DE交于點(diǎn)F.試判斷線段AB與DE的數(shù)量關(guān)系和位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王同學(xué)在學(xué)校組織的社會調(diào)查活動中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).
月均用水量(單位:t) | 頻數(shù) | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 |
|
|
5≤x<6 | 10 | 20% |
6≤x<7 |
| 12% |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(1)請根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;
(2)如果家庭月均用水量“大于或等于4t且小于7t”為中等用水量家庭,請你估計總體小王所居住的小區(qū)中等用水量家庭大約有多少戶?
(3)從月均用水量在2≤x<3,8≤x<9這兩個范圍內(nèi)的樣本家庭中任意抽取2個,請用列舉法(畫樹狀圖或列表)求抽取出的2個家庭來自不同范圍的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com