如圖,BP,CP分別是△ABC的∠ABC,∠ACB的內(nèi)角或相鄰?fù)饨瞧椒志,請(qǐng)你根據(jù)下面的三種情形分別畫(huà)出點(diǎn)P到△ABC三邊所在的直線的距離.

答案:
解析:

如圖:


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探索下列∠A與∠P之間的關(guān)系,并說(shuō)明理由.
(1)如圖①,BP、CP分別平分∠ABC、∠ACB;
(2)如圖②,BP、CP分別平分∠ABC、∠ACB的補(bǔ)角:
(3)如圖③,BP平分∠ABC的補(bǔ)角、CP平分∠ACB的補(bǔ)角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖BP、CP分別平分∠ABC、∠ACB,請(qǐng)你探索∠A和∠P的數(shù)量關(guān)系.
解:∵BP平分∠ABC(已知)
∴∠PBC=
1
2
∠ABC (
角平分線的定義
角平分線的定義
).
同理可得∠PCB=
1
2
∠ACB
∵∠BPC+∠PBC+∠PCB=180°(
三角形的內(nèi)角和等于180°
三角形的內(nèi)角和等于180°

∴∠BPC=180°-∠PBC-∠PCB (等式的性質(zhì))
=180°-
1
2
(∠ABC+∠ACB ) (
等量代換
等量代換

=180°-
1
2
(180°-∠
A
A

=90°+
1
2
A
A

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,BO、CO分別為∠ABC和∠ACB的平分線,我們易得∠BOC=90°+
12
∠A(不必證明,本題可直接運(yùn)用);在圖②中,當(dāng)BO′、CO′分別為∠ABC和∠ACB的外角平分線時(shí),求∠BO′C與∠A的數(shù)量關(guān)系.我們可以利用“轉(zhuǎn)化”的思想,將未知的∠BO′C轉(zhuǎn)化為已知的∠BOC:如圖②,作BO、CO平分∠ABC和∠ACB.

(1)在圖②中存在如圖③的基本圖形:點(diǎn)A、B、D在同一直線上,且BO、BO′分別平分∠ABC和∠DBC,試證明:BO⊥BO′;
(2)試直接利用上述基本圖形的結(jié)論,猜想并證明圖②中∠BO′C與∠A的數(shù)量關(guān)系;
(3)如圖④,BP、CP分別為內(nèi)角∠ABC和外角∠ACF的平分線,試運(yùn)用上述轉(zhuǎn)化的思想猜想并證明∠BPC與∠A的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖①,BO、CO分別為∠ABC和∠ACB的平分線,我們易得∠BOC=90°+數(shù)學(xué)公式∠A(不必證明,本題可直接運(yùn)用);在圖②中,當(dāng)BO′、CO′分別為∠ABC和∠ACB的外角平分線時(shí),求∠BO′C與∠A的數(shù)量關(guān)系.我們可以利用“轉(zhuǎn)化”的思想,將未知的∠BO′C轉(zhuǎn)化為已知的∠BOC:如圖②,作BO、CO平分∠ABC和∠ACB.

(1)在圖②中存在如圖③的基本圖形:點(diǎn)A、B、D在同一直線上,且BO、BO′分別平分∠ABC和∠DBC,試證明:BO⊥BO′;
(2)試直接利用上述基本圖形的結(jié)論,猜想并證明圖②中∠BO′C與∠A的數(shù)量關(guān)系;
(3)如圖④,BP、CP分別為內(nèi)角∠ABC和外角∠ACF的平分線,試運(yùn)用上述轉(zhuǎn)化的思想猜想并證明∠BPC與∠A的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案