我們解一元二次方程3x2﹣6x=0時(shí),可以運(yùn)用因式分解法,將此方程化為3x(x﹣2)=0,從而得到兩個(gè)一元一次方程:3x=0或x﹣2=0,進(jìn)而得到原方程的解為x1=0,x2=2.這種解法體現(xiàn)的數(shù)學(xué)思想是( 。
| A. | 轉(zhuǎn)化思想 | B. | 函數(shù)思想 | C. | 數(shù)形結(jié)合思想 | D. | 公理化思想 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,平面上直線a,b分別經(jīng)過(guò)線段OK兩端點(diǎn)(數(shù)據(jù)如圖),則a,b相交所成的銳角是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在“愛(ài)滿揚(yáng)州”慈善一日捐活動(dòng)中,學(xué)校團(tuán)總支為了了解本校學(xué)生的
捐款情況,隨機(jī)抽取了50名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計(jì),并繪制成下面的統(tǒng)計(jì)圖。
(1)這50名同學(xué)捐款的眾數(shù)為 元,中位數(shù)為 元
(2)求這50名同學(xué)捐款的平均數(shù)
(3)該校共有600名學(xué)生參與捐款,請(qǐng)估計(jì)該校學(xué)生的捐款總數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,直線⊥線段于點(diǎn),點(diǎn)在上,且,點(diǎn)是直線上的動(dòng)點(diǎn),作點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),直線與直線相交于點(diǎn),連接
(1)如圖1,若點(diǎn)與點(diǎn)重合,則∠= °,線段與的比值為 ;
(2)如圖2,若點(diǎn)與點(diǎn)不重合,設(shè)過(guò)、、三點(diǎn)的圓與直線相交于,
連接。
求證:①=;②=2;
(3)如圖3,,,則滿足條件的點(diǎn)都在一個(gè)確定的圓上,在
以下兩小題中選做一題:
①如果你能發(fā)現(xiàn)這個(gè)確定圓的圓心和半徑,那么不必寫(xiě)出發(fā)現(xiàn)過(guò)程,只要證明這個(gè)
圓上的任意一點(diǎn)Q,都滿足QA=2QB
②如果你不能發(fā)現(xiàn)這個(gè)確定圓的圓心和半徑,那么請(qǐng)取幾個(gè)特殊位置的點(diǎn),如點(diǎn)在直線上、點(diǎn)與點(diǎn)重合等進(jìn)行探究,求這個(gè)圓的半徑
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在網(wǎng)格中,小正方形的邊長(zhǎng)均為1,點(diǎn)A,B,C都在格點(diǎn)上,則∠ABC的正切值是( 。
| A. | 2 | B. |
| C. |
| D. |
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,把Rt△ABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點(diǎn)A、B的坐標(biāo)分別為(1,0)、(4,0).將△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在直線y=2x﹣6上時(shí),線段BC掃過(guò)的面積為( )
| A.] | 4 | B. | 8 | C. | 16 | D. | 8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com