【題目】關(guān)于x的方程(m﹣2)x2+(m﹣1)x+m=0是一元二次方程的條件是(
A.m≠l
B.m≠﹣1且m≠2
C.m≠2
D.m≠1且m≠2

【答案】C
【解析】解:要使方程是一元二次方程,則: m﹣2≠0,
∴m≠2.
故本題選C.
【考點精析】利用一元二次方程的定義對題目進(jìn)行判斷即可得到答案,需要熟知只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程為一元二次方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】﹣7的相反數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(m﹣1)x2+x+m2+4m﹣5=0的一個根為0,則m的值為(
A.1
B.﹣5
C.1或﹣5
D.m≠1的任意實數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若2axb2與-5a3by的和為單項式,則yx=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我縣某汽車銷售公司經(jīng)銷某品牌A款汽車,隨著汽車的普及,其價格也在不斷下降,今年5月份A款汽車的售價比去年同期每輛降價1萬元,如果賣出相同數(shù)量的A款汽車,去年銷售額為100萬元,今年銷售額只有90萬元.

(1)今年5月份A款汽車每輛售價多少萬元?

(2)為了增加收入,汽車銷售公司決定再經(jīng)銷同品牌的B款汽車,已知A款汽車每輛進(jìn)價7.5萬元,B款汽車每輛進(jìn)價為6萬元,公司預(yù)計用不多于105萬元且不少于99萬元的資金購進(jìn)這兩款汽車共15輛,有幾種進(jìn)貨方案?

(3)如果B款汽車每輛售價為8萬元,為打開B款汽車的銷路,公司決定每售出一輛B款汽車,返還顧客現(xiàn)金a萬元,要使(2)中所有的方案獲利相同,a值應(yīng)是多少?此時,哪種方案對公司更有利?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,ABC的頂點A、B、C在小正方形的頂點上,將ABC向下平移4個單位、再向右平移3個單位得到A1B1C1,然后將A1B1C1繞點A1順時針旋轉(zhuǎn)90°得到A1B2C2

(1)在網(wǎng)格中畫出A1B1C1A1B2C2

(2)計算線段AC從開始變換到A1 C2的過程中掃過區(qū)域的面積(重疊部分不重復(fù)計算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,BAC=90°,AB=6,AC=8,P為邊BC上一動點,PEAB于E,PFAC于F,M為EF中點,則AM的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如下表:

下列結(jié)論:

(1)ac<0; (2)當(dāng)x>1時,y的值隨x值的增大而減小.

(3)3是方程ax2+(b-1)x+c=0的一個根;(4)當(dāng)-1<x<3時,ax2+(b-1)x+c>0.

其中正確的的是_________;(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,AD=3,把矩形沿直線AC折疊,使點B落在點E處,AE交CD于點F,連接DE.

(1)求證:DEC≌△EDA;(2)求DF的值;(3)在線段AB上找一點P,連結(jié)FP使FPAC,連結(jié)PC,試判定四邊形APCF的形狀,并說明理由,直接寫出此時線段PF的大小

查看答案和解析>>

同步練習(xí)冊答案