【題目】某工廠餐廳計劃購買12張餐桌和一批餐椅,現在從甲、乙兩商場了解到,同一型號的餐桌報價每張均為200元,餐椅報價每把均為50元,甲商場做活動,每購買一張餐桌贈送一把餐椅。乙商場的活動是所有桌椅均按報價的八五折銷售。若該工廠計劃購買餐椅 (>12)把,則:
(1)當購買40把餐椅時,到哪家商場購買劃算?
(2)用含的代數式表示到甲、乙兩商場購買所需要的費用。
(3)當購買多少把餐椅時,到甲、乙兩商場購買所需要的費用相同?
【答案】(1)當購買桌椅40把時,到乙商場去買劃算;(2),;(3)當購買32把餐椅時,到甲、乙兩商場購買所需要的費用相同.
【解析】
(1)分別計算甲乙兩個商家所需要的費用,進行比較,即可得到答案;
(2)根據題意,找出等量關系,列出關系式即可;
(3)由(2)的結論,令兩個商家的費用相等,即可求出椅子的數量.
解:(1)時,
元,
元,
∵3800>3740 ,
∴乙合適;
∴當購買桌椅40把時,到乙商場去買劃算。
(2)設購買12張餐桌和把餐椅,到購買甲商場的費用為元,到乙商場購買的費用為元. 由題意得:
;
;
(3)到甲、乙兩商場購買所需要的費用相同,
令,則
,
解得:
∴當購買32把餐椅時,到甲、乙兩商場購買所需要的費用相同.
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( 。
A. “明天降雨的概率是60%”表示明天有60%的時間都在降雨
B. “拋一枚硬幣正面朝上的概率為”表示每拋2次就有一次正面朝上
C. “彩票中獎的概率為1%”表示買100張彩票肯定會中獎
D. “拋一枚正方體骰子,朝上的點數為2的概率為”表示隨著拋擲次數的增加,“拋出朝上的點數為2”這一事件發(fā)生的概率穩(wěn)定在附近
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=120°.將一直角三角形的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O逆時針旋轉至圖2,使一邊OM在∠BOC的內部,且恰好平分∠BOC,問:直線ON是否平分∠AOC?請說明理由;
(2)將圖1中的三角板繞點O按每秒5°的速度沿逆時針方向旋轉一周,在旋轉的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為 (直接寫出結果);
(3)將圖1中的三角板繞點O順時針旋轉至圖3,使ON在∠AOC的內部,OD為∠BOM平分線.請?zhí)骄浚骸?/span>MOD與∠NOC之間的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知線段,點的坐標為,點的坐標為,如圖1所示.
(1)平移線段到線段,使點的對應點為,點的對應點為,若點的坐標為,求點的坐標;
(2)平移線段到線段,使點在軸的正半軸上,點在第二象限內(與對應, 與對應),連接如圖2所示.若表示△BCD的面積),求點、的坐標;
(3)在(2)的條件下,在軸上是否存在一點,使?若存在,求出點的坐標,
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A、B為x軸上兩點,C、D為y軸上的兩點,經過點A、C、B的拋物線的一部分c1與經過點A、D、B的拋物線的一部分c2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點C的坐標為(0,﹣ ),點M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點.
(1)求A、B兩點的坐標;
(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;
(3)當△BDM為直角三角形時,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ABCD中,BD⊥AD,∠A=45°,E、F分別是AB,CD上的點,且BE=DF,連接EF交BD于O.
(1)求證:BO=DO;
(2)若EF⊥AB,延長EF交AD的延長線于G,當FG=1時,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】【閱讀學習】 劉老師提出這樣一個問題:已知α為銳角,且tanα=,求sin2α的值.
小娟是這樣解決的:
如圖1,在⊙O中,AB是直徑,點C在⊙O上,∠BAC=α,所以∠ACB=90°,tanα==.
易得∠BOC=2α.設BC=x,則AC=3x,則AB=x.作CD⊥AB于D,求出CD= (用含x的式子表示),可求得sin2α== .
【問題解決】
已知,如圖2,點M、N、P為圓O上的三點,且∠P=β,tanβ =,求sin2β的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察下列運算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,則81+82+83+84+…+82 018+82 019的和的個位數字是____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線y1=2x與直線y2=﹣2x+4相交于點A.以下結論:
①點A的坐標為A(1,2);②當x=1時,兩個函數值相等:
③當x<1時,y1<y2; 、苤本y1=2x與直線y2=﹣2x+4在平面直角坐標系中的位置關系是平行.其中正確的個數有( )個.
A. 4B. 3C. 2D. 1
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com