【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論,正確的有( )個
① ② ③ ④
A. 1個B. 2個C. 3個D. 4個
【答案】C
【解析】
由拋物線開口方向得a<0,由拋物線的對稱性得到-1<<0,,則b<0,由拋物線與y軸交于正半軸得到c>0,所以abc>0,于是可對①進(jìn)行判斷;根據(jù)對稱軸的位置得到-1<<0,利用a<0變形得到b>2a,則可對②進(jìn)行判斷;根據(jù)圖象即可得出x= -2時,y=4 a-2b+c<0,則可③進(jìn)行判斷;根據(jù)圖象知道當(dāng)x=1時,y=a+b+c<0,x=-1時,y=a-b+c>0,利用平方差公式可得(a+c)2-b2=(a+c+b)(a+c-b)<0,則可對④進(jìn)行判斷.
解:∵拋物線開口向下,
∴a<0,
∵拋物線的對稱軸在y軸與直線x=-1之間,即-1<<0,
∴b<0,
∵拋物線與y軸交于正半軸,則c>0.
所以abc>0.
故①正確.
∵-1<<0,a<0,
∴b>2a,即2a-b<0,所以②正確;
根據(jù)圖象可得:x= -2時,y=4 a-2b+c<0,所以③正確;
根據(jù)圖象知道當(dāng)x=1時,y=a+b+c<0,
根據(jù)圖象知道當(dāng)x=-1時,y=a-b+c>0,
所以 (a+c)2-b2=(a+c+b)(a+c-b)<0.
所以 (a+c)2<b2.
故④錯誤.
故正確的有①②③.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通過學(xué)習(xí)銳角三角比,我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值是一一對應(yīng)的,因此,兩條邊長的比值與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(can),如圖(1)在△ABC中,AB=AC,底角B的鄰對記作canB,這時canB=底邊/腰=,容易知道一個角的大小與這個角的鄰對值也是一一對應(yīng)的.根據(jù)上述角的鄰對的定義,解下列問題:
(1)can30°= ;
(2)如圖(2),已知在△ABC中,AB=AC,canB=,S△ABC=24,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù),反比例函數(shù)(a,b,k是常數(shù),且),若其中一部分x,y的對應(yīng)值如表:則不等式的解集是_________.
x | 1 | 2 | 3 | 4 | ||||
3 | 2 | 1 | 0 | |||||
2 | 3 | 6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了深入學(xué)習(xí)社會主義核心價值觀,對本校學(xué)生進(jìn)行了一次相關(guān)知識的測試,隨機(jī)抽取了部分學(xué)生的測試成績進(jìn)行統(tǒng)計(根據(jù)成績分為、、、、五個組,表示測試成績,組:;組:;組:;組:;組:),通過對測試成績的分析,得到如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答以下問題:
(1)抽取的學(xué)生共有______人,請將兩幅統(tǒng)計圖補(bǔ)充完整;
(2)抽取的測試成績的中位數(shù)落在______組內(nèi);
(3)本次測試成績在80分以上(含80分)為優(yōu)秀,若該校初三學(xué)生共有1200人,請估計該校初三測試成績?yōu)閮?yōu)秀的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖拋物線與軸交于,兩點,與軸交于點,點是拋物線對稱軸上任意一點,若點、、分別是、、的中點,連接,,則的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,其對稱軸為直線x=﹣1,與x軸的交點為(x1,0)、(x2,0),其中0<x2<1,有下列結(jié)論:①b2﹣4ac>0;②4a﹣2b+c>﹣1;③﹣3<x1<﹣2;④當(dāng)m為任意實數(shù)時,a﹣b≤am2+bm;⑤3a+c=0.其中,正確的結(jié)論有( )
A.②③④B.①③⑤C.②④⑤D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,點E是AD的中點,連接CE,并延長CE與BA的延長線交于點F, 若∠BCF=90°,則∠D的度數(shù)為( )
A.60°B.55°C.45°D.40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明利用剛學(xué)過的測量知識來測量學(xué)校內(nèi)一棵古樹的高度。一天下午,他和學(xué)習(xí)小組的同學(xué)帶著測量工具來到這棵古樹前,由于有圍欄保護(hù),他們無法到達(dá)古樹的底部B,如圖所示。于是他們先在古樹周圍的空地上選擇一點D,并在點D處安裝了測量器DC,測得古樹的頂端A的仰角為45°;再在BD的延長線上確定一點G,使DG=5米,并在G處的地面上水平放置了一個小平面鏡,小明沿著BG方向移動,當(dāng)移動帶點F時,他剛好在小平面鏡內(nèi)看到這棵古樹的頂端A的像,此時,測得FG=2米,小明眼睛與地面的距離EF=1.6米,測傾器的高度CD=0.5米。已知點F、G、D、B在同一水平直線上,且EF、CD、AB均垂直于FB,求這棵古樹的高度AB。(小平面鏡的大小忽略不計)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是⊙O的直徑,OB⊥CD交⊙O于點B,連接CB,AB是⊙O的弦,AB交CD于點E,F是CD的延長線上一點且AF=EF.
(1)判斷AF和⊙O的位置關(guān)系并說明理由.
(2)若∠ABC=60°,BC=1cm,求陰影部分的面積.(結(jié)果保留根號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com