【題目】如圖,CD⊥AB,BE⊥AC,垂足分別為D、E,BE、CD相交于點(diǎn)O.如果AB=AC,那么圖中全等的直角三角形的對(duì)數(shù)是( 。
A.1B.2C.3D.4
【答案】C
【解析】
共有3對(duì),分別為△ADC≌△AEB,△BOD≌△COE.Rt△ADO≌Rt△AEO;做題時(shí)要從已知條件開(kāi)始結(jié)合圖形利用全等的判定方法由易到難逐個(gè)尋找即可.
∵CD⊥AB,BE⊥AC,
∴∠ADC=∠AEE=90°,
在△ADC和△AEB中,
∵∠ADC=∠AEB,∠DAC=∠EAB,AC=AB,
∴△ADC≌△AEB(AAS);
∴AD=AE,∠C=∠B,
∵AB=AC,
∴BD=CE,
在△BOD和△COE中,
∵∠B=∠C,∠BOD=∠COE,BD=CE,
∴△BOD≌△COE(AAS);
∴OB=OC,OD=OE,
在Rt△ADO和Rt△AEO中,
∵OA=OA,OD=OE,
∴Rt△ADO≌Rt△AEO(HL);
∴共有3對(duì)全等三角形,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線與x軸交于A(﹣1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式.
(2)D是第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)C、B不重合),過(guò)點(diǎn)D作DF⊥x軸于點(diǎn)F,交直線BC于點(diǎn)E,連結(jié)BD、CD設(shè)點(diǎn)D的橫坐標(biāo)為m,△BCD的面積為S.
①求S關(guān)于m的函數(shù)關(guān)系式及自變量m的取值范圍.
②當(dāng)m為何值時(shí),S有最大值,并求這個(gè)最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0;
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3;
⑤當(dāng)x<0時(shí),y隨x增大而增大;
其中結(jié)論正確有 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】星光櫥具店購(gòu)進(jìn)電飯煲和電壓鍋兩種電器進(jìn)行銷售,其進(jìn)價(jià)與售價(jià)如表:
進(jìn)價(jià)(元/臺(tái)) | 售價(jià)(元/臺(tái)) | |
電飯煲 | 200 | 250 |
電壓鍋 | 160 | 200 |
(1)一季度,櫥具店購(gòu)進(jìn)這兩種電器共30臺(tái),用去了5600元,并且全部售完,問(wèn)櫥具店在該買賣中賺了多少錢?
(2)為了滿足市場(chǎng)需求,二季度櫥具店決定用不超過(guò)9000元的資金采購(gòu)電飯煲和電壓鍋共50臺(tái),且電飯煲的數(shù)量不少于電壓鍋的,問(wèn)櫥具店有哪幾種進(jìn)貨方案?并說(shuō)明理由;
(3)在(2)的條件下,請(qǐng)你通過(guò)計(jì)算判斷,哪種進(jìn)貨方案櫥具店賺錢最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,是上一點(diǎn),于點(diǎn),是的中點(diǎn),于點(diǎn),與交于點(diǎn),若,平分,連結(jié),.
(1)求證:;
(2)求證:.
(3)若,判定四邊形是否為菱形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)A的坐標(biāo)為(﹣1,0),與y軸交于點(diǎn)C(0,3),作直線BC.動(dòng)點(diǎn)P在x軸上運(yùn)動(dòng),過(guò)點(diǎn)P作PM⊥x軸,交拋物線于點(diǎn)M,交直線BC于點(diǎn)N,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(Ⅰ)求拋物線的解析式和直線BC的解析式;
(Ⅱ)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),求線段MN的最大值;
(Ⅲ)當(dāng)以C、O、M、N為頂點(diǎn)的四邊形是平行四邊形時(shí),直接寫(xiě)出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,在平面直角坐標(biāo)系中,點(diǎn)A,B,E分別是x軸和y軸上的任意點(diǎn). BD是∠ABE的平分線,BD的反向延長(zhǎng)線與∠OAB的平分線交于點(diǎn)C.
探究: (1)求∠C的度數(shù).
發(fā)現(xiàn): (2)當(dāng)點(diǎn)A,點(diǎn)B分別在x軸和y軸的正半軸上移動(dòng)時(shí),∠C的大小是否發(fā)生變化?若不變,請(qǐng)直接寫(xiě)出結(jié)論;若發(fā)生變化,請(qǐng)求出∠C的變化范圍.
應(yīng)用:(3)如圖2在五邊形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延長(zhǎng)線與∠EDC外角的平分線相交于點(diǎn)P,求∠P的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D為邊BC的中點(diǎn),以AD為邊作等邊△ADE,連接BE.
求證:BE=BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有足夠多的長(zhǎng)方形和正方形卡片,如下圖:
(1)如果選取1號(hào)、2號(hào)、3號(hào)卡片分別為l張、1張、2張,可拼成一個(gè)長(zhǎng)方形(不重疊無(wú)縫隙),請(qǐng)畫(huà)出這個(gè)長(zhǎng)方形(所畫(huà)圖形大小和原圖保持一致),并用等式表示拼圖前后面積之間的關(guān)系:
(2)小明用類似方法解釋分解因式a2+5ab+4b2,請(qǐng)畫(huà)圖說(shuō)明小明的方法(所畫(huà)圖形大小和原圖保持一致),并寫(xiě)出分解因式的結(jié)果.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com