【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,4),線段MN的位置如圖所示,其中點(diǎn)M的坐標(biāo)為(﹣3,﹣1),點(diǎn)N的坐標(biāo)為(3,﹣2).

1)將線段MN平移得到線段AB,其中點(diǎn)M的對應(yīng)點(diǎn)為A,點(diǎn)N的對稱點(diǎn)為B

點(diǎn)M平移到點(diǎn)A的過程可以是:先向   平移   個單位長度,再向   平移   個單位長度;

點(diǎn)B的坐標(biāo)為   

2)在(1)的條件下,若點(diǎn)C的坐標(biāo)為(4,0),連接AC,BC,求△ABC的面積.

【答案】1)①右、3、上、5;②(6,3);(210

【解析】

1)由點(diǎn)M及其對應(yīng)點(diǎn)的A的坐標(biāo)可得平移的方向和距離,據(jù)此可得點(diǎn)N的對應(yīng)點(diǎn)B的坐標(biāo);

2)運(yùn)用割補(bǔ)法求解可得.

1)如圖,

①點(diǎn)M平移到點(diǎn)A的過程可以是:先向右平移3個單位長度,再向上平移5個單位長度;

②點(diǎn)B的坐標(biāo)為(6,3),

故答案為:右、3、上、5、(6,3);

2)如圖,SABC6×4×4×4×2×3×6×110

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABCD相交于點(diǎn)O,若BE平分∠ABDCDF,CE平分∠ACDABG,∠A=45°,∠BEC=40°,則∠D的度數(shù)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】彈簧掛上物體后會伸長,若一彈簧長度(cm)與所掛物體質(zhì)量(kg)之間的關(guān)系如下表:

物體的質(zhì)量(kg)

0

1

2

3

4

5

彈簧的長度(cm)

12

125

13

135

14

145

則下列說法錯誤的是(

A.彈簧長度隨物體的質(zhì)量的變化而變化,物體的質(zhì)量是自變量,彈簧的長度是因變量

B.如果物體的質(zhì)量為x kg,那么彈簧的長度y cm可以表示為y=12+0.5x

C.在彈簧能承受的范圍內(nèi),當(dāng)物體的質(zhì)量為7kg時,彈簧的長度為16cm

D.在沒掛物體時,彈簧的長度為12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=2,延長BC到點(diǎn)E,使CE=1,連接DE,動點(diǎn)P從點(diǎn)A出發(fā)以每秒1個單位的速度沿AB-BC-CD-DA向終點(diǎn)A運(yùn)動,設(shè)點(diǎn)P的運(yùn)動時間為t秒,當(dāng)△ABP和△DCE全等時,t的值____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程(x-3)(x-2)-p2=0.

(1)求證:無論p取何值時,方程總有兩個不相等的實(shí)數(shù)根;

(2)設(shè)方程兩實(shí)數(shù)根分別為x1、x2,且滿足x12+x22=3 x1x2,求實(shí)數(shù)p的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在坐標(biāo)平面內(nèi),已知點(diǎn)A(0,3)、B(6,5),

(1)連接AB,在x軸上確定點(diǎn)P,使PA=PB(用尺規(guī)作圖,保留作圖痕跡,不寫作法),并求出P點(diǎn)坐標(biāo);

(2)點(diǎn)Qx軸上的動點(diǎn),求點(diǎn)QA、B兩點(diǎn)的距離之和的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一水果店,從批發(fā)市場按4千克的價(jià)格購進(jìn)10噸蘋果,為了保鮮放在冷藏室里,但每天仍有一些蘋果變質(zhì),平均每天有50千克變質(zhì)丟棄,且每存放一天需要各種費(fèi)用300元,據(jù)預(yù)測,每天每千克價(jià)格上漲元.

設(shè)x天后每千克蘋果的價(jià)格為p元,寫出px的函數(shù)關(guān)系式;

若存放x天后將蘋果一次性售出,設(shè)銷售總金額為y元,求出yx的函數(shù)關(guān)系式;

該水果店將這批水果存放多少天后一次性售出,可以獲得最大利潤,最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大樹AB與大數(shù)CD相距13m,小華從點(diǎn)B沿BC走向點(diǎn)C,行走一段時間后他到達(dá)點(diǎn)E,此時他仰望兩棵大樹的頂點(diǎn)AD,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點(diǎn)E的時間是(

A. 13s B. 8s C. 6s D. 5s

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲于某日下午1時騎自行車從A地出發(fā)前往B地,乙于同日下午騎摩托車從A地出發(fā)前往B地,如圖所示,圖中折線PQR和線段MN分別表示甲和乙所行駛的路程和時間之間的關(guān)系圖象,試根據(jù)圖象回答下列問題.

1AB兩地相距多少千米?甲出發(fā)幾小時,乙才開始出發(fā)?

2)甲騎自行車的平均速度是多少?乙騎摩托車的平均速度是多少?

3)乙在該日下午幾時追上了甲?這時兩人離B地還有多少千米?

查看答案和解析>>

同步練習(xí)冊答案