在△ABC中,I是內(nèi)心,∠BIC=130°,則∠A的度數(shù)是


  1. A.
    40°
  2. B.
    50°
  3. C.
    65°
  4. D.
    80°
D
分析:已知∠BIC=130°,則根據(jù)三角形內(nèi)角和定理可知∠IBC+∠ICB=50°,則得到∠ABC+∠ACB=100度,則本題易解.
解答:解:∵∠BIC=130°,
∴∠IBC+∠ICB=50°,
又∵I是內(nèi)心即I是三角形三個(gè)內(nèi)角平分線的交點(diǎn),
∴∠ABC+∠ACB=100°,
∴∠A=80°.
故選D.
點(diǎn)評(píng):正確理解三角形的角平分線的定義,以及三角形的內(nèi)角和定理是解決的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

31、課外興趣小組活動(dòng)時(shí),老師提出了如下問題:
(1)如圖1,在△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長(zhǎng)AD到E,使得DE=AD,再連接BE(或?qū)ⅰ鰽CD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關(guān)系可得2<AE<8,則1<AD<4.
[感悟]解題時(shí),條件中若出現(xiàn)“中點(diǎn)”“中線”字樣,可以考慮構(gòu)造以中點(diǎn)為對(duì)稱中心的中心對(duì)稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個(gè)三角形中.
(2)解決問題:受到(1)的啟發(fā),請(qǐng)你證明下列命題:如圖2,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF.
求證:BE+CF>EF,若∠A=90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•樊城區(qū)模擬)下面是有關(guān)三角形內(nèi)外角平分線的探究,閱讀后按要求作答:
探究1:如圖(1),在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點(diǎn),通過分析發(fā)現(xiàn):∠BOC=90°+
1
2
∠A(不要求證明).
探究2:如圖(2)中,O是∠ABC與外角∠ACD的平分線BO和CO的交點(diǎn),試分析∠BOC與∠A有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由.
探究3:如圖(3)中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點(diǎn),則∠BOC與∠A有怎樣的數(shù)量關(guān)系?(只寫結(jié)論,不需證明).結(jié)論:
∠BOC=90°-
1
2
∠A
∠BOC=90°-
1
2
∠A

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2008•徐匯區(qū)一模)如圖,在△ABC中,AH是BC邊上的高,矩形DEFG內(nèi)接于△ABC(即點(diǎn)D、E、F、G都在△ABC的邊上),BC=18,AH=6,矩形DEFG的周長(zhǎng)是20.
求:S矩形DEFG的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題.

探究1:如圖1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點(diǎn),分析發(fā)現(xiàn)∠BOC=90°+
1
2
∠A,理由如下:
∵BO和CO分別是∠ABC,∠ACB的角平分線
∴∠1+∠2=
1
2
(∠ABC+∠ACB)=
1
2
(180°-∠A)=90°-
1
2
∠A
∴∠BOC=180°-(∠1+∠2)=180°-(90°-
1
2
∠A)=90°+
1
2
∠A
(1)探究2:如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點(diǎn),試分析∠BOC與∠A有怎樣的關(guān)系?請(qǐng)說明理由.
(2)探究3:如圖3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點(diǎn),則∠BOC與∠A有怎樣的關(guān)系?(直接寫出結(jié)論)
(3)拓展:如圖4,在四邊形ABCD中,O是∠ABC與∠DCB的平分線BO和CO的交點(diǎn),則∠BOC與∠A+∠D有怎樣的關(guān)系?(直接寫出結(jié)論)
(4)運(yùn)用:如圖5,五邊形ABCDE中,∠BCD、∠EDC的外角分別是∠FCD、∠GDC,CP、DP分別平分∠FCD和∠GDC且相交于點(diǎn)P,若∠A=140°,∠B=120°,∠E=90°,則∠CPD=
95
95
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠B是直角,P是三角形內(nèi)的一點(diǎn),已知PA=10,PB=6,∠APB=∠BPC=∠CPA,則PC的長(zhǎng)度是
33
33

查看答案和解析>>

同步練習(xí)冊(cè)答案