【題目】用適當(dāng)方法解下列方程:
(1)(x-4)2-81=0;
(2)3x(x-3)=2(x-3);
(3).
(4)解方程:2x2-10x=3.
【答案】(1)x1=13,x2=-5(2)x1=3,x2=(3)x1=,x2=
(4)x1=,x2=
【解析】
(1)利用直接開平方法即可求解一元二次方程;(2)利用因式分解即可求解;
(3)根據(jù)公式法即可求解;(4)根據(jù)公式法即可求解.
(1)(x-4)2-81=0;
(x-4)2=81
x-4=±9,
x-4=9或x-4=-9,
解得x1=13,x2=-5
(2)3x(x-3)=2(x-3)
3x(x-3)-2(x-3)=0
(x-3)(3x-2)=0
x-3=0,或3x-2=0,
解得x1=3,x2=
(3).
把原方程化為2x2-6x-1=0
∵△=(-6)2-4×2×(-1)=36+8=44>0,
∴x==
∴x1=,x2=
(4)解方程:2x2-10x=3.
把原方程化為2x2-10x-3=0
∵△=(-10)2-4×2×(-3)=100+24=124>0,
∴x==
∴x1=,x2=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,點O在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線與AC的延長線相交于點P.
(1)求證:PD是⊙O的切線;
(2)求證:△ABD∽△DCP;
(3)當(dāng)AB=5cm,AC=12cm時,求線段PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個交點在(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:①abc>0;②4ac﹣b2<0;③a+b+c>0;④3a<﹣c;⑤am2+bm≤a﹣b(m為任意實數(shù)).正確結(jié)論的個數(shù)是( 。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比函數(shù)的圖象過Rt△ABO斜邊OB的中點D,與直角邊AB相交于C,連結(jié)AD、OC,若△ABO的周長為,AD=2,則△ACO的面積為( )
A. B. 1 C. 2 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店銷售某款童裝,每件售價60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價銷售.市場調(diào)查反映:每降價1元,每星期可多賣30件.已知該款童裝每件成本價40元,設(shè)該款童裝每件售價x元,每星期的銷售量為y件.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)每件售價定為多少元時,每星期的銷售利潤最大,最大利潤多少元?
(3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,E,F(xiàn)分別是DC和CB的延長線上的點,且DE=BF,連接AE,AF,EF.
(1)求證:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE繞旋轉(zhuǎn)中心____點,按順時針方向旋轉(zhuǎn)___度得到;
(3)若BC=8,DE=2,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在小水池旁有一盞路燈,已知支架AB的長是0.8m,A端到地面的距離AC是4m,支架AB與燈柱AC的夾角為65°.小明在水池的外沿D測得支架B端的仰角是45°,在水池的內(nèi)沿E測得支架A端的仰角是50°(點C、E、D在同一直線上),求小水池的寬DE.(結(jié)果精確到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛慢車從甲地勻速行駛至乙地,一輛快車同時從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時間x(小時)的對應(yīng)關(guān)系如圖所示:
(1)甲乙兩地的距離是 千米;
(2)兩車行駛多長時間相距300千米?
(3)求出兩車相遇后y與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,過點B做⊙O的切線BC,點D為⊙O上一點,且CD=CB,連結(jié)DO并延長交CB的延長線于點E.
(1)求證:CD是⊙O的切線;
(2)連接AC,若BE=4,DE=8,求線段AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com