【題目】已知ABCD是一個以AD為直徑的圓內(nèi)接四邊形,分別延長AB和DC,它們相交于P,若∠APD=60°,AB=5,PC=4,則⊙O的面積為( )
A. 25π B. 16π C. 15π D. 13π
【答案】D
【解析】
連接AC,由圓周角定理可得出∠ACD=90°,再由圓內(nèi)接四邊形的性質(zhì)及三角形內(nèi)角和定理可求出∠PAC=30°,由直角三角形的性質(zhì)可求出AP、AC的長,由相似三角形的判定定理及性質(zhì)可得出CD的長,再根據(jù)勾股定理接可求出AD的長,進而求出該圓的面積.
連接AC,
∵AD是⊙O的直徑,
∴∠ACD=90°,
∵∠APD=60°,
∴∠PAC=30°,
∴AP=2PC=2×4=8,
∵AB=5,
∴PB=8-5=3,
∵四邊形ABCD是以AD為直徑的圓內(nèi)接四邊形,
∴∠BAD+∠BCD=180°,
∵∠BCD+∠PCB=180°,
∴∠BAD=∠PCB,∠APD=∠APD,
∴△PCB∽△PAD,
∴,即,PD=6,
∴CD=PD-PC=6-4=2,
∴AC=,
在Rt△ACD中,AD=.
∴OA=AD=,
∴⊙O的面積=π×()2=13π.
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,點D是⊙O上一點,點C是弧AD的中點,弦CE⊥AB于點F,過點D的切線交EC的延長線于點G,連接AD,分別交CF、BC于點P、Q,連接AC.給出下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心;④APAD=CQCB.其中正確的是( )
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同。
(1)從箱子中任意摸出一個球是白球的概率是多少?
(2)從箱子中任意摸出一個球,不將它放回箱子,攪勻后再摸出一個球,求兩次摸出球的都是白球的概率,并畫出樹狀圖。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點是邊上一動點(不與點重合),過點作交邊于點,將沿直線翻折,點落在射線上的點處,當(dāng)為直角三角形時,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC邊于點D,過點C作CF∥AB,與過點B的切線交于點F,連接BD.
(1)求證:BD=BF;
(2)若AB=10,CD=4,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:(1)所有的等腰三角形都相似;(2)所有的等腰直角三角形都相似;(3)有一個角相等的兩個等腰三角形相似(4)頂角相等的兩個等腰三角形相似.
其中正確的有( )
A. 個B. 個C. 個D. 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點G,若AE=3ED,DF=CF,則的值是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設(shè)其橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)若動點P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時,四邊形AOPE面積最大,并求出其最大值;
(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90,AC=4cm,BC=3cm,點P由點B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由點A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連結(jié)PQ。若設(shè)運動時間為t(s)(0<t<2),解答下列問題:
(1)當(dāng)t為何值時?PQ//BC?
(2)設(shè)△APQ的面積為y(cm2),求y與t之間的函數(shù)關(guān)系?
(3)是否存在某一時刻t,使線段PQ恰好把△ABC的周長和面積同時平分?若存在求出此時t的值;若不存在,說明理由。
(4)如圖2,連結(jié)PC,并把△PQC沿AC翻折,得到四邊形PQP'C,那么是否存在某一時刻t,使四邊形PQP'C為菱形?若存在求出此時t的值;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com