【題目】二次函數(shù)yx26x+m滿足以下條件:當﹣2x<﹣1時,它的圖象位于x軸的下方;當8x9時,它的圖象位于x軸的上方,則m的值為_____

【答案】16

【解析】

先確定拋物線的對稱軸為直線x=3,則根據(jù)拋物線的對稱性得到x=-2x=8時,函數(shù)值相等,然后根據(jù)題意判斷拋物線與x軸的交點坐標為(-2,0),(8,0),最后把(-2,0)代入y=x2-6x+m可求得m的值.

解:∵拋物線的對稱軸為直線x=﹣3,

x=﹣2x8對應的函數(shù)值相等,

而當﹣2x<﹣1時,它的圖象位于x軸的下方;當8x9時,它的圖象位于x軸的上方,

x=﹣2x8時,y0

把(﹣2,0)代入yx26x+m4+12+m0,解得m=﹣16

故答案為﹣16

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+(a>0,b<0)的圖象與x軸只有一個公共點A

(1)當a=時,求點A的坐標;

(2)過點A的直線y=x+k與二次函數(shù)的圖象相交于另一點B,當b≥﹣1時,求點B的橫坐標m的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一場籃球比賽中,一名球員在關(guān)鍵時刻投出一球,已知球出手時離地面高2米,與籃圈中心的水平距離為7米,當球出手后水平距離為4米時到達最大高度4米,已知籃球運行的軌跡為拋物線,籃圈中心距離地面3.19米.

1)以地面為x軸,籃球出手時垂直地面所在直線為y軸建立平面直角坐標系,求籃球運行的拋物線軌跡的解析式;

2)通過計算,判斷這個球員能否投中?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】太原雙塔寺又名永祚寺,是國家級文物保護單位,由于雙塔(舍利塔、文峰塔)聳立,被人們稱為文筆雙塔,是太原的標志性建筑之一,某校社會實踐小組為了測量舍利塔的高度,在地面上的C處垂直于地面豎立了高度為2米的標桿CD,這時地面上的點E,標桿的頂端點D,舍利塔的塔尖點B正好在同一直線上,測得EC4米,將標桿CD向后平移到點C處,這時地面上的點F,標桿的頂端點H,舍利塔的塔尖點B正好在同一直線上(點F,點G,點E,點C與塔底處的點A在同一直線上),這時測得FG6米,GC53米.

請你根據(jù)以上數(shù)據(jù),計算舍利塔的高度AB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的正方形網(wǎng)格中建立平面直角坐標系,已知ABC三個頂點分別為A﹣1,2)、B21)、C4,5).

1)畫出ABC關(guān)于x對稱的A1B1C1

2)以原點O為位似中心,在x軸的上方畫出A2B2C2,使A2B2C2ABC位似,且位似比為2,并求出A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的平分線,過,作,垂足為,,則_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某養(yǎng)雞場有2500只雞準備對外出售.從中隨機抽取了一部分雞,根據(jù)它們的質(zhì)量(單位:),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:

(Ⅰ)圖①中的值為 ;

(Ⅱ)求統(tǒng)計的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(Ⅲ) 根據(jù)樣本數(shù)據(jù),估計這2500只雞中,質(zhì)量為的約有多少只?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣2x2+4xx軸交于點O、A,把拋物線在x軸及其上方的部分記為C1,將C1y鈾為對稱軸作軸對稱得到C2,C2x軸交于點B,若直線yx+mC1,C2共有3個不同的交點,則m的取值范圍是(

A. 0<m< B. m

C. 0m D. mm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O00),B0,1)是正方形OBB1C的兩個頂點,以對角線OB1為一邊作正方形OB1B2C1,再以正方形OB1B2C1的對角線OB2為一邊作正方形OB2B3C2,依次下去,則點B7的坐標是_____

查看答案和解析>>

同步練習冊答案