如圖,四邊形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋轉后能與△DFA重合.若AE=5cm,則四邊形AECF的面積為   
【答案】分析:根據(jù)垂直的定義可得∠AEB=∠AEC=90°,根據(jù)旋轉變換只改變圖形的位置不改變圖形的形狀與大小可得△ADF和△ABE全等,根據(jù)全等三角形對應角相等可得∠AEB=∠F,全等三角形對應邊相等可得AE=AF,然后證明四邊形是矩形,再根據(jù)鄰邊相等的矩形是正方形可得四邊形AECF是正方形,然后根據(jù)正方形的面積公式列式計算即可得解.
解答:解:∵AE⊥BC,
∴∠AEB=∠AEC=90°,
∵AB=AD,△BEA旋轉后能與△DFA重合,
∴△ADF≌△ABE,
∴∠AEB=∠F,AE=AF,
∵∠C=90°,
∴∠AEC=∠C=∠F=90°,
∴四邊形AECF是矩形,
又∵AE=AF,
∴矩形AECF是正方形,
∵AE=5cm,
∴四邊形AECF的面積為52=25cm2
故答案為:25cm2
點評:本題考查了旋轉的性質,正方形的判定與性質,根據(jù)旋轉變換只改變圖形的位置不改變圖形的形狀與大小得到全等三角形,然后證明四邊形AECF是正方形是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質.(至少3條)
(提示:平面圖形的性質通常從它的邊、內角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案