【題目】將長(zhǎng)為2、寬為a(a大于1且小于2)的長(zhǎng)方形紙片按如圖①所示的方式折疊并壓平,剪下一個(gè)邊長(zhǎng)等于長(zhǎng)方形寬的正方形,稱為第一次操作:再把剩下的長(zhǎng)方形按如圖②所示的方式折疊并壓平,剪下個(gè)邊長(zhǎng)等于此時(shí)長(zhǎng)方形寬的正方形,稱為第二次操作:如此反復(fù)操作下去…,若在第n次操作后,剩下的長(zhǎng)方形恰為正方形,則操作終止當(dāng)n=3時(shí),a的值為______.
【答案】或
【解析】
(1)經(jīng)過(guò)第一次操作可知剩下的長(zhǎng)方形一邊長(zhǎng)為a,另一邊長(zhǎng)為2-a;
(2)若第二次操作后,剩下的長(zhǎng)方形恰好是正方形,則所以剩下的長(zhǎng)方形的兩邊分別為2-a、a-(2-a)=2a-2,
(3)根據(jù)第2次剩下的長(zhǎng)方形分兩種情況討論,若第三次操作后,剩下的長(zhǎng)方形恰好是正方形,由此可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論.
解:第1次操作,剪下的正方形邊長(zhǎng)為a,剩下的長(zhǎng)方形的長(zhǎng)寬分別為a、2-a,由1<a<2,得a>2-a
第2次操作,剪下的正方形邊長(zhǎng)為2-a,所以剩下的長(zhǎng)方形的兩邊分別為2-a、a-(2-a)=2a-2,
①當(dāng)2a-2<2-a,即a<時(shí),
則第3次操作時(shí),剪下的正方形邊長(zhǎng)為2a-2,剩下的長(zhǎng)方形的兩邊分別為2a-2、(2-a)-(2a-2)=4-3a,
則2a-2=4-3a,解得a= ;
②2a-2>2-a,即a>時(shí)
則第3次操作時(shí),剪下的正方形邊長(zhǎng)為2-a,剩下的長(zhǎng)方形的兩邊分別為2-a、(2a-2)-(2-a)=3a-4,
則2-a=3a-4,解得a=;
故答案為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)是4,點(diǎn)P是AD邊的中點(diǎn),點(diǎn)E是正方形邊上的一點(diǎn),若△PBE是等腰三角形,則腰長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別是A(3,2)、B(1,3).△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到A1OB1.
(1)畫出旋轉(zhuǎn)后的圖形;
(2)點(diǎn)A1的坐標(biāo)為 ;
(3)求線段OB在旋轉(zhuǎn)過(guò)程中所掃過(guò)的圖形面積(寫過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某體育用品商店購(gòu)進(jìn)了足球和排球共20個(gè),一共花了1360元,進(jìn)價(jià)和售價(jià)如表:
足球 | 排球 | |
進(jìn)價(jià)(元/個(gè)) | 80 | 50 |
售價(jià)(元/個(gè)) | 95 | 60 |
(l)購(gòu)進(jìn)足球和排球各多少個(gè)?
(2)全部銷售完后商店共獲利潤(rùn)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=∠ADC=90°,對(duì)角線AC,BD交于點(diǎn)O,DE平分∠ADC交BC于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是矩形;
(2)若AB=4,求△OEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,已知EK垂直平分BC,垂足為D,AB與EK相交于點(diǎn)F,連接CF.求證:∠AFE=∠CFD.
(2)如圖2,在Rt△GMN中,∠M=90°,P為MN的中點(diǎn).
①用直尺和圓規(guī)在GN邊上求作點(diǎn)Q,使得∠GQM=∠PQN(保留作圖痕跡,不要求寫作法);
②在①的條件下,如果∠G=60°,那么Q是GN的中點(diǎn)嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表顯示的是某種大豆在相同條件下的發(fā)芽試驗(yàn)結(jié)果:
每批粒數(shù)n | 100 | 300 | 400 | 600 | 1000 | 2000 | 3000 |
發(fā)芽的粒數(shù)m | 96 | 282 | 382 | 570 | 948 | 1904 | 2850 |
發(fā)芽的頻率 | 0.960 | 0.940 | 0.955 | 0.950 | 0.948 | 0.952 | 0.950 |
下面有三個(gè)推斷:
①當(dāng)n為400時(shí),發(fā)芽的大豆粒數(shù)為382,發(fā)芽的頻率為0.955,所以大豆發(fā)芽的概率是0.955;
②隨著試驗(yàn)時(shí)大豆的粒數(shù)的增加,大豆發(fā)芽的頻率總在0.95附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)大豆發(fā)芽的概率是0.95;
③若大豆粒數(shù)n為4000,估計(jì)大豆發(fā)芽的粒數(shù)大約為3800粒.
其中推斷合理的是( 。
A. ①②③ B. ①② C. ①③ D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)與反比例函數(shù)在同一平面直角坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個(gè)結(jié)論:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正確結(jié)論的個(gè)數(shù)是( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com