(2013•武漢)如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,-4),畫(huà)出平移后對(duì)應(yīng)的△A2B2C2;
(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2;請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo);
(3)在x軸上有一點(diǎn)P,使得PA+PB的值最小,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
分析:(1)延長(zhǎng)AC到A1,使得AC=A1C,延長(zhǎng)BC到B1,使得BC=B1C,利用點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,-4),得出圖象平移單位,即可得出△A2B2C2
(2)根據(jù)△△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2進(jìn)而得出,旋轉(zhuǎn)中心即可;
(3)根據(jù)B點(diǎn)關(guān)于x軸對(duì)稱(chēng)點(diǎn)為A2,連接AA2,交x軸于點(diǎn)P,再利用相似三角形的性質(zhì)求出P點(diǎn)坐標(biāo)即可.
解答:解:(1)如圖所示:

(2)如圖所示:旋轉(zhuǎn)中心的坐標(biāo)為:(
3
2
,-1);

(3)∵PO∥AC,
A2O
A2C
=
PO
AC
,
4
6
=
PO
3
,
∴OP=2,
∴點(diǎn)P的坐標(biāo)為(-2,0).
點(diǎn)評(píng):此題主要考查了圖形的平移與旋轉(zhuǎn)和相似三角形的性質(zhì)等知識(shí),利用軸對(duì)稱(chēng)求最小值問(wèn)題是考試重點(diǎn),同學(xué)們應(yīng)重點(diǎn)掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•武漢)如圖,△ABC中,AB=AC,∠A=36°,BD是AC邊上的高,則∠DBC的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•武漢)如圖,⊙A與⊙B外切于點(diǎn)D,PC,PD,PE分別是圓的切線,C,D,E是切點(diǎn).若∠CDE=x°,∠ECD=y°,⊙B的半徑為R,則
DE
的長(zhǎng)度是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•武漢)如圖是由四個(gè)大小相同的正方體組合而成的幾何體,其主視圖是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•武漢)如圖,已知四邊形ABCD是平行四邊形,BC=2AB.A,B兩點(diǎn)的坐標(biāo)分別是(-1,0),(0,2),C,D兩點(diǎn)在反比例函數(shù)y=
kx
(k<0)的圖象上,則k等于
-12
-12

查看答案和解析>>

同步練習(xí)冊(cè)答案