【題目】如圖所示,直線ABCD于點(diǎn)O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE41,則∠AOF等于( 。

A. 130°B. 120°C. 110°D. 100°

【答案】B

【解析】

先設(shè)出∠BOE=α,再表示出∠DOE=αAOD=4α,建立方程求出α,最用利用對頂角,角之間的和差即可.

解:設(shè)∠BOEα

∵∠AOD:∠BOE41,

∴∠AOD

OE平分∠BOD,

∴∠DOE=∠BOEα

∴∠AOD+DOE+BOE180°,

4α+α+α180°,

α30°,

∴∠AOD120°,

∴∠BOC=∠AOD120°,

OF平分∠COB,

∴∠COFBOC60°

∵∠AOC=∠BOD60°,

∴∠AOF=∠AOC+COF120°,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,分別作∠BAD與∠ABC的平分線分別交BC于點(diǎn)E,交AD于點(diǎn)F 連接EF

1)補(bǔ)全圖形;

2)判斷四邊形ABEF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)某種產(chǎn)品,每件產(chǎn)品成本是3元,售價是4元,年銷售量為10萬件,為了獲得更好的效益,公司準(zhǔn)備拿出一定的資金做廣告.根據(jù)經(jīng)驗(yàn),每年投入的廣告費(fèi)是x(萬元)時,產(chǎn)品的年銷售量將是原銷售量的y倍,且,如果把利潤看作是銷售總額減去成本費(fèi)和廣告費(fèi),進(jìn)貨都能銷售完,試寫出年利潤S(萬元)與廣告費(fèi)x(萬元)的函數(shù)關(guān)系式,并計(jì)算廣告費(fèi)是多少萬元時,公司獲得的年利潤最大,最大年利潤是是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為1的小正方形網(wǎng)格中,AOB的頂點(diǎn)均在格點(diǎn)上.

(1)B點(diǎn)關(guān)于y軸的對稱點(diǎn)坐標(biāo)為

(2)將AOB向左平移3個單位長度,再向上平移2個單位長度得到A1O1B1,請畫出A1O1B1;

(3)在(2)的條件下,AOB邊AB上有一點(diǎn)P的坐標(biāo)為(a,b),則平移后對應(yīng)點(diǎn)P1的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)甲,乙,丙三位學(xué)生進(jìn)入了校園朗誦比賽冠軍、亞軍和季軍的決賽,他們將通過抽簽來決定比賽的出場順序.

1)求甲第一個出場的概率;

2)求甲比乙先出場的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)解分式方程

2)已知(x2+px+q)(x23x+2)中,不含x3項(xiàng)和x項(xiàng),求p,q的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B兩地被池塘隔開,小明通過下列方法測出了A,B間的距離:先在AB外選一點(diǎn)C,然后測出ACBC的中點(diǎn)M,N,并測量出MN的長為12 m,由此他就知道了A,B間的距離,有關(guān)他這次探究活動的描述錯誤的是(  )

A. AB=24 m B. MNAB C. CMN∽△CAB D. CMMA=12

【答案】D

【解析】試題分析:根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得MNAB,MN=AB,再根據(jù)相似三角形的判定解答.

試題解析:∵M(jìn)N分別是AC,BC的中點(diǎn)

MNABMN=AB,

∴AB=2MN=2×12=24m

△CMN∽△CAB

∵M(jìn)AC的中點(diǎn)

∴CM=MA

∴CMMA=11

故描述錯誤的是D選項(xiàng).

故選D

考點(diǎn):1.三角形中位線定理;2.相似三角形的應(yīng)用.

型】單選題
結(jié)束】
10

【題目】若關(guān)于的一元二次方程+x-3m=0有兩個不相等的實(shí)數(shù)根,的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,BAE+AED=180°1=2,那么M=N(下面是推理過程,請你填空).

解:∵∠BAE+AED=180°(已知)

(同旁內(nèi)角互補(bǔ),兩直線平行)

∴∠BAE= (兩直線平行,內(nèi)錯角相等)

∵∠1=2

∴∠BAE1=

MAE=

(內(nèi)錯角相等,兩直線平行)

∴∠M=N(兩直線平行,內(nèi)錯角相等)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列條件中不能判定AB∥CD的是(  )

A. ∠3=∠4 B. ∠1=∠5 C. ∠4+∠5=180° D. ∠3+∠5=180°

查看答案和解析>>

同步練習(xí)冊答案