已知如圖,PA切⊙O于A,AB⊥PO交⊙O于B,PO的延長線交⊙O于C,若∠APC=20°,則∠BCP=   
【答案】分析:由OA=OB,得到三角形AOB為等腰三角形,再根據OM與AB垂直,利用三線合一得到OP為∠AOB的平分線,可得出∠AOP=∠BOP,又AP為圓O的切線,根據切線的性質得到AP與OA垂直,可得出三角形AOP為直角三角形,根據直角三角形的兩個銳角互余,由∠APC的度數(shù)求出∠AOP的度數(shù),進而得到∠BOP的度數(shù),而所求∠BCP與∠BOP所對的為同一條弧,利用同弧所對的圓周角等于所對圓心角的一半,可得出∠BCP的度數(shù).
解答:
解:∵OA=OB,OM⊥AB,
∴OP為∠AOB的平分線,即∠AOP=∠BOP,
又∵PA切⊙O于A,
∴OA⊥AP,即∠OAP=90°,
又∵∠APC=20°,
∴∠AOP=∠BOP=70°,
∵圓周角∠BCP與圓心角∠BOP所對的弧都為,
∴∠BCP=∠BOP=35°.
故答案為:35°
點評:此題考查了切線的性質,等腰三角形的性質,以及圓周角定理,熟練掌握性質及定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知如圖,PA切⊙O于A,AB⊥PO交⊙O于B,PO的延長線交⊙O于C,若∠APC=20°,則∠BCP=
35°
35°

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年北京市九年級上學期期中測試數(shù)學卷 題型:填空題

已知如圖,PA切⊙O于A,AB⊥PO交⊙O于B,PO的延長線交⊙O于C,若∠APC=20°,則∠BCP=________°.

 

查看答案和解析>>

科目:初中數(shù)學 來源:北京期中題 題型:填空題

已知如圖,PA切⊙O于A,AB⊥PO交⊙O于B,PO的延長線交⊙O于C,若∠APC=20°,則∠BCP= _________

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年北京市三帆中學九年級上學期期中測試數(shù)學卷 題型:填空題

已知如圖,PA切⊙O于A,AB⊥PO交⊙O于B,PO的延長線交⊙O于C,若∠APC=20°,則∠BCP="________°."

查看答案和解析>>

同步練習冊答案