設(shè)x+y=5,xy=-3.求(2x-3y-2xy)-(x-4y+xy)的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:初中教材全解 數(shù)學(xué) 八年級下 (北師實驗) 雙色版 (北師實驗) 雙色版 題型:013

有理數(shù)x,y滿足xy=1,設(shè)M=,則M,N關(guān)系是

[  ]

A.M>N

B.M=N

C.M<N

D.不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省南京市鼓樓區(qū)中考二模數(shù)學(xué)試卷(帶解析) 題型:解答題

【提出問題】
如圖①,在梯形ABCD中,AD//BC,AC、BD交于點E,∠BEC=n°,若AD=a,BC=b,則梯形ABCD的面積最大是多少?
【探究過程】
小明提出:可以從特殊情況開始探究,如圖②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,則梯形ABCD的面積最大是多少?
如圖③,過點D做DE//AC交BC的延長線于點E,那么梯形ABCD的面積就等于△DBE的面積,求梯形ABCD的面積最大值就是求△DBE的面積最大值.如果設(shè)AC=x,BD=y(tǒng),那么S△DBE=xy.
以下是幾位同學(xué)的對話:
A同學(xué):因為y=,所以S△DBE=x,求這個函數(shù)的最大值即可.
B同學(xué):我們知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值
C同學(xué):△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我們先將所有滿足BE=10的直角△DBE都找出來,然后在其中尋找高最大的△DBE即可.

(1)請選擇A同學(xué)或者B同學(xué)的方法,完成解題過程.
(2)請幫C同學(xué)在圖③中畫出所有滿足條件的點D,并標(biāo)出使△DBE面積最大的點D1.(保留作圖痕跡,可適當(dāng)說明畫圖過程)
【解決問題】
根據(jù)對特殊情況的探究經(jīng)驗,請在圖①中畫出面積最大的梯形ABCD的頂點D1,并直接寫出梯形ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南京市鼓樓區(qū)中考二模數(shù)學(xué)試卷(解析版) 題型:解答題

【提出問題】

如圖①,在梯形ABCD中,AD//BC,AC、BD交于點E,∠BEC=n°,若AD=a,BC=b,則梯形ABCD的面積最大是多少?

【探究過程】

小明提出:可以從特殊情況開始探究,如圖②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,則梯形ABCD的面積最大是多少?

如圖③,過點D做DE//AC交BC的延長線于點E,那么梯形ABCD的面積就等于△DBE的面積,求梯形ABCD的面積最大值就是求△DBE的面積最大值.如果設(shè)AC=x,BD=y(tǒng),那么S△DBE=xy.

以下是幾位同學(xué)的對話:

A同學(xué):因為y=,所以S△DBE=x,求這個函數(shù)的最大值即可.

B同學(xué):我們知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值

C同學(xué):△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我們先將所有滿足BE=10的直角△DBE都找出來,然后在其中尋找高最大的△DBE即可.

(1)請選擇A同學(xué)或者B同學(xué)的方法,完成解題過程.

(2)請幫C同學(xué)在圖③中畫出所有滿足條件的點D,并標(biāo)出使△DBE面積最大的點D1.(保留作圖痕跡,可適當(dāng)說明畫圖過程)

【解決問題】

根據(jù)對特殊情況的探究經(jīng)驗,請在圖①中畫出面積最大的梯形ABCD的頂點D1,并直接寫出梯形ABCD面積的最大值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖8,已知D、E、F分別是銳角△ABC的三邊BC、CA、AB上的點,且AD、BE、CF相交于點P,AP=BP=CP=6,設(shè)PD=x,PE=y(tǒng),PF=z,若xy+yz+zx=28,求xyz的大。

查看答案和解析>>

同步練習(xí)冊答案