【題目】某校為了了解學生使用手機情況,隨機抽取了部分學生進行|使用手機的目的和每周使用手機的時間的問卷調查,并繪制成如圖所示的統(tǒng)計圖,已知“查資料”的人數為38人。
根據以上信息,回答下列問題:
(1)這次調查中,一共抽查了__________名學生;
(2)在扇形統(tǒng)計圖中,“玩游戲”所對應的圓心角的度數是___________度;
(3)補全條形統(tǒng)計圖;
(4)若該校共有學生2000人,請你估計每周使用手機時間超過2小時的人數.
【答案】(1)100;(2)126;(3)見解析;(4)1300人.
【解析】
(1)根據查資料的人數和所占的百分比可以求得本次調查的總人數;
(2)根據扇形統(tǒng)計圖中的數據求出“玩游戲”所占比例,進而求出所對應的圓心角的度數;
(3)根據(1)中的結果和條形統(tǒng)計圖中的數據可以求得使用手機3小時以上的人數,從而可以將條形統(tǒng)計圖補充完整;
(4)利用樣本估計總體的思想計算即可.
解:(1)在這次調查中,一共抽取了38÷38%=100名學生,
故答案為:100;
(2)在扇形統(tǒng)計圖中,“玩游戲”所對應的圓心角的度數是360°×(138%18%9%)=126°,
故答案為:126;
(3)使用手機3小時以上的人數為:1002151832=33,
補全條形統(tǒng)計圖如圖所示:
(4)2000×=1300(人),
答:估計每周使用手機時間超過2小時的人數有1300人.
科目:初中數學 來源: 題型:
【題目】某校為了解學生“陽光體育運動”的實施情況,隨機調查了40名學生一周的體育鍛煉時間,并繪制成了如下圖所示的條形統(tǒng)計圖,根據統(tǒng)計圖提供的數據,該校40名同學一周參加體育鍛煉時間的眾數與中位數分別是( )
A.8,9B.8,8C.9,8D.10,9
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】仙桃是遂寧市某地的特色時令水果.仙桃一上市,水果店的老板用2400元購進一批仙桃,很快售完;老板又用3700元購進第二批仙桃,所購件數是第一批的倍,但進價比第一批每件多了5元.
(1)第一批仙桃每件進價是多少元?
(2)老板以每件225元的價格銷售第二批仙桃,售出80%后,為了盡快售完,剩下的決定打折促銷.要使得第二批仙桃的銷售利潤不少于440元,剩余的仙桃每件售價至少打幾折?(利潤=售價﹣進價)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AB=4cm,C為AB上一動點,過點C的直線交⊙O于D、E兩點,且∠ACD=60°,DF⊥AB于點F,EG⊥AB于點G,當點C在AB上運動時,設AF=xcm,DE=ycm(當x的值為0或3時,y的值為2),探究函數y隨自變量x的變化而變化的規(guī)律.
(1)通過取點、畫圖、測量,得到了x與y的幾組對應值,如下表:
x/cm | 0 | 0.40 | 0.55 | 1.00 | 1.80 | 2.29 | 2.61 | 3 |
y/cm | 2 | 3.68 | 3.84 | 3.65 | 3.13 | 2.70 | 2 |
(2)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數的圖象;
(3)結合畫出的函數圖象,解決問題:點F與點O重合時,DE長度約為 cm(結果保留一位小數).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知三角形紙片△ABC和△DEF重合在一起,AB=AC,DE=DF,△ABC≌△DEF.數學實驗課上,張老師讓同學們用這兩張紙片進行如下操作:
(1)(操作探究1)保持△ABC不動,將△DEF沿射線BC方向平移至圖2所示位置,通過度量發(fā)現BE:CE=1:2,則S△CGE:S△CAB= ;
(2)(操作探究2)保持△ABC不動,將△DEF通過一次全等變換(平移、旋轉或翻折后和△ABC拼成以BC為一條對角線的菱形,請用語言描述你的全等變換過程.
(3)(操作探究3)將兩個三角形按圖3所示放置:點C與點F重合,AB∥DE.保持△ABC不動,將△DEF沿射線DA方向平移.若AB=13,BC=10,設△DEF平移的距離為m.
①當m=0時,連接AD、BE,判斷四邊形ABED的形狀并說明理由;
②在平移的過程中,四邊形ABED能否成為正方形?若能,請求出m的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,直線y=-2x+4交x軸、y軸于A,B兩點,交雙曲線y=(x<0)于C點,△OAC的面積為6.
(1)求雙曲線的解析式;
(2)如圖②,D為雙曲線y=(x<0)上一點,連接CD,將線段CD繞點D順時針旋轉90°得線段DE,點E恰好落在x軸上,求點E的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為迎接:“國家衛(wèi)生城市”復檢,某市環(huán)衛(wèi)局準備購買A,B兩種型號的垃圾箱,通過市場調研得知:購買3個A型垃圾箱和2個B型垃圾箱共需540元,購買2個A型垃圾箱比購買3個B型垃圾箱少用160元.
(1)求每個A型垃圾箱和B型垃圾箱各多少元?
(2)該市現需要購買A,B兩種型號的垃圾箱共30個,其中買A型垃圾箱不超過16個.
①求購買垃圾箱的總花費w(元)與A型垃圾箱x(個)之間的函數關系式;
②當買A型垃圾箱多少個時總費用最少,最少費用是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了推進球類運動的發(fā)展,某校組織校內球類運動會,分籃球、足球、排球、羽毛球、乒乓球五項,要求每位學生必須參加一項并且只能參加一項,某班有一名學生根據自己了解的班內情況繪制了如圖所示的不完整統(tǒng)計表和扇形統(tǒng)計圖.
請根據圖表中提供的信息,解答下列問題:
(1)圖表中m=________,n=________;
(2)若該校學生共有1000人,則該校參加羽毛球活動的人數約為________人;
(3)該班參加乒乓球活動的4位同學中,有3位男同學(分別用A,B,C表示)和1位女同學(用D表示),現準備從中選出兩名同學參加雙打比賽,用樹狀圖或列表法求出恰好選出一男一女的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com