【題目】如圖,均勻的正四面體的各面依次標(biāo)有1,2,3,4四個數(shù).
(1)同時拋擲兩個這樣的四面體,它們著地一面的數(shù)字相同的概率是多少?
(2)現(xiàn)在有一張周杰倫演唱會的門票,小敏和小亮用拋擲這兩個四面體的方式來決定誰獲得門票,規(guī)則是:同時拋擲這兩個四面體,如果著地一面的數(shù)字之積為奇數(shù)小敏勝;如果著地一面的數(shù)字之積為偶數(shù)小亮勝(勝方獲得門票),如果是你,你愿意充當(dāng)小敏還是小亮,說明理由.
【答案】(1);(2)小亮獲得門票的機會大,愿意充當(dāng)小亮.
【解析】
(1)先畫樹狀圖展示所有16種等可能的結(jié)果數(shù),再找著地一面的數(shù)字相同的結(jié)果數(shù),然后根據(jù)概率公式計算;
(2)分別計算小敏勝的概率和小亮勝的概率,然后根據(jù)他們的概率大小進(jìn)行判斷.
解:(1)畫樹狀圖為:
共有16種等可能的結(jié)果數(shù),其中著地一面的數(shù)字相同的占4種,
所以著地一面的數(shù)字相同的概率==;
(2)充當(dāng)小亮到.理由如下:
共有16種等可能的結(jié)果數(shù),著地一面的數(shù)字之積為奇數(shù)有4種,著地一面的數(shù)字之積為偶數(shù)有12種,
所以小敏勝的概率==;小亮勝的概率==,
所以小亮獲得門票的機會大,愿意充當(dāng)小亮.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,為線段上一點,為線段上一點,,設(shè),.
①如果,那么_______,_________;
②求之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,任意畫一個∠BAC=60°的△ABC,再分別作△ABC的兩條角平分線BE和CD,BE和CD相交于點P,連接AP,有以下結(jié)論:①∠BPC=120°;②AP平分∠BAC;③AD=AE;④PD=PE;⑤BD+CE=BC;其中正確的結(jié)論為_____.(填寫序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等邊△ABC中,點D,E分別在邊AB,AC上,AD=AE,連接BE,CD,點M、N、P分別是BE、CD、BC的中點.
(1)觀察猜想:圖1中,△PMN的形狀是 ;
(2)探究證明:把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,△PMN的形狀是否發(fā)生改變?并說明理由;
(3)拓展延伸:把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=1,AB=3,請直接寫出△PMN的周長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B為定點,定直線l//AB,P是l上一動點.點M,N分別為PA,PB的中點,對于下列各值:
①線段MN的長;
②△PAB的周長;
③△PMN的面積;
④直線MN,AB之間的距離;
⑤∠APB的大。
其中會隨點P的移動而變化的是( )
A. ②③ B. ②⑤ C. ①③④ D. ④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解,補全證明過程及推理依據(jù).
已知:如圖,點E在直線DF上,點B在直線AC上,∠1=∠2,∠3=∠4.
求證∠A=∠F
證明:∵∠1=∠2(已知)
∠2=∠DGF( )
∴∠1=∠DGF(等量代換)
∴ ∥ ( )
∴∠3+∠ =180°( )
又∵∠3=∠4(已知)
∴∠4+∠C=180°(等量代換)
∴ ∥ ( )
∴∠A=∠F( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點A,點C,過點A作AB⊥x軸,垂足為點A,過點C作CB⊥y軸,垂足為點C,兩條垂線相交于點B.
(1)線段AB,BC,AC的長分別為AB= ,BC= ,AC= ;
(2)折疊圖1中的△ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DE交AB于點D,交AC于點E,連接CD,如圖2.
請從下列A、B兩題中任選一題作答,我選擇 題.
A:①求線段AD的長;
②在y軸上,是否存在點P,使得△APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標(biāo);若不存在,請說明理由.
B:①求線段DE的長;
②在坐標(biāo)平面內(nèi),是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點E是BC邊的中點,連接AE并延長與DC的延長線交于F.
(1)求證:CF=CD;
(2)若AF平分∠BAD,連接DE,試判斷DE與AF的位置關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com