【題目】如圖,P是矩形ABCD的邊AD上一個(gè)動(dòng)點(diǎn),矩形的兩條邊AB、BC的長(zhǎng)分別為3和4,那么點(diǎn)P到矩形的兩條對(duì)角線AC和BD的距離之和是( )

A.
B.
C.
D.不確定

【答案】A
【解析】解:連接OP,

∵矩形的兩條邊AB、BC的長(zhǎng)分別為和4,

∴S矩形ABCD=ABBC=12,OA=OC,OB=OD,AC=BD=5,

∴OA=OD=2.5,

∴SACD= S矩形ABCD=6,

∴SAOD= SACD=3,

∵SAOD=SAOP+SDOP= OAPE+ ODPF= ×2.5×PE+ ×2.5×PF= (PE+PF)=3,

解得:PE+PF=

所以答案是:A.

【考點(diǎn)精析】利用三角形的面積和矩形的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知三角形的面積=1/2×底×高;矩形的四個(gè)角都是直角,矩形的對(duì)角線相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一項(xiàng)工程,甲,乙兩公司合做,12天可以完成,共需付施工費(fèi)102000元;如果甲,乙兩公司單獨(dú)完成此項(xiàng)工程,乙公司所用時(shí)間是甲公司的1.5倍,乙公司每天的施工費(fèi)比甲公司每天的施工費(fèi)少1500元.

(1)甲,乙兩公司單獨(dú)完成此項(xiàng)工程,各需多少天?

(2)若讓一個(gè)公司單獨(dú)完成這項(xiàng)工程,哪個(gè)公司的施工費(fèi)較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從甲地到乙地有兩條公路,一條是全長(zhǎng)600km的普通公路,另一條是全長(zhǎng)480km的高速公路,某客車在高速公路上行駛的平均速度比在普通公路上快45/ ,由高速公路從甲地到乙地所需的時(shí)間是由普通公路從甲地到乙地所需時(shí)間的一半,求該客車由高速公路從甲地到乙地所需的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,⊙A的圓心A的坐標(biāo)為(-1,0),半徑為1,點(diǎn)P為直線 上的動(dòng)點(diǎn),過(guò)點(diǎn)P作⊙A的切線,切點(diǎn)為Q,則切線長(zhǎng)PQ的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰直角△ABC,點(diǎn)P是斜邊BC上一點(diǎn)(不與B,C重合),PE是△ABP的外接圓⊙O的直徑

(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求 的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線AB與直線CD相交于點(diǎn)O,OE平分.

1)如圖①,若,求的度數(shù);

2)如圖②,射線OF內(nèi)部.

①若,判斷OF是否為的平分線,并說(shuō)明理由;

②若OF平分,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=Rt∠,以BC為直徑的⊙O交AB于點(diǎn)D,切線DE交AC于點(diǎn)E.

(1)求證:∠A=∠ADE;
(2)若AD=16,DE=10,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊ABCD中,E、F分別是AB、DC上的點(diǎn),且AE=CF,

(1)求證:ADE≌△CBF;

(2) 當(dāng)∠DEB=90°時(shí),試說(shuō)明四邊形DEBF為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在矩形中,AB=30cm,BC=60cm.點(diǎn)從點(diǎn)出發(fā),沿路線向點(diǎn)勻速運(yùn)動(dòng),到達(dá)點(diǎn)后停止;點(diǎn)從點(diǎn)出發(fā),沿路線向點(diǎn)勻速運(yùn)動(dòng),到達(dá)點(diǎn)后停止.若點(diǎn)同時(shí)出發(fā),在運(yùn)動(dòng)過(guò)程中,點(diǎn)停留了,圖②是兩點(diǎn)在折線上相距的路程S(cm)與時(shí)間(s)之間的部分函數(shù)關(guān)系圖象.求:

1P、Q兩點(diǎn)的運(yùn)動(dòng)速度及PC點(diǎn)的時(shí)間;

2)設(shè)的面積為,求之間的關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案