【題目】閱讀材料
小明遇到這樣一個問題:求計算所得多項式的一次項系數(shù).
小明想通過計算所得的多項式解決上面的問題,但感覺有些繁瑣,他想探尋一下,是否有相對簡潔的方法.
他決定從簡單情況開始,先找所得多項式中的一次項系數(shù).通過觀察發(fā)現(xiàn):
也就是說,只需用中的一次項系數(shù)1乘以中的常數(shù)項3,再用中的常數(shù)項2乘以中的一次項系數(shù)2,兩個積相加,即可得到一次項系數(shù).
延續(xù)上面的方法,求計算所得多項式的一次項系數(shù).可以先用的一次項系數(shù)1, 的常數(shù)項3, 的常數(shù)項4,相乘得到12;再用的一次項系數(shù)2, 的常數(shù)項2, 的常數(shù)項4,相乘得到16;然后用的一次項系數(shù)3, 的常數(shù)項2, 的常數(shù)項3,相乘得到18.最后將12,16,18相加,得到的一次項系數(shù)為46.
參考小明思考問題的方法,解決下列問題:
(1)計算所得多項式的一次項系數(shù)為 .
(2)計算所得多項式的一次項系數(shù)為 .
(3)若計算所得多項式的一次項系數(shù)為0,則=_________.
(4)若是的一個因式,則的值為 .
【答案】(1)7(2)-7(3)-3(4)-15
【解析】試題分析:(1)用2x+1中的一次項系數(shù)2乘以3x+2中的常數(shù)項2得4,用2x+1中的常數(shù)項1乘以3x+2中的一次項系數(shù)3得3,4+3=7即為積中一次項的系數(shù);
(2)用x+1中的一次項系數(shù)1,3x+2中的常數(shù)項2,4x-3中的常數(shù)項-3相乘得-6,用x+1中的常數(shù)項1,3x+2中的一次項系數(shù)3,4x-3中的常數(shù)項-3相乘得-9,用x+1中的常數(shù)項1,3x+2中的常數(shù)項2,4x-3中的一次項系數(shù)4相乘得8,-6-9+8=-7即為積中一次項系數(shù);
(3)用每一個因式中的一次項系數(shù)與另兩個因式中的常數(shù)項相乘,再把所得的積相加,列方程、解方程即可得;
(4)設可以分成( )(x2+kx+2),根據(jù)小明的算法則有k-3=0,a=-3k+2+1,b=-3×2+k,解方程即可得.
試題解析:(1)2×2+1×3=7,
故答案為:7;
(2)1×2×(-3)+3×1×(-3)+4×1×2=-7,
故答案為:-7;
(3)由題意得:1×a×(-1)+(-3)×1×(-1)+2×1×a=0,解得:a=-3,
故答案為:-3;
(4)設可以分成( )(x2+kx+2),
則有k-3=0,a=-3k+2+1,b=-3×2+k,
解得:k=3,a=-6,b=-3,
所以2a+b=-15,
故答案為:-15.
b=3-6=-3
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列關于自然數(shù)的等式:
a1:32-12=8×1;
a2:52-32=8×2;
a3:72-52=8×3;……
根據(jù)上述規(guī)律解決下列問題:
⑴寫出第a4個等式:___________;
⑵寫出你猜想的第an個等式(用含n的式子表示),并驗證其正確性;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠B=∠C=90°,M是BC的中點,DM平分∠ADC,則AM平分∠DAB嗎?試說明理由。(提示:過點M作ME垂直AD于E)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點P(1,0).點P第1次向上跳動1個單位至點P1(1,1),緊接著第2次向左跳動2個單位至點P2(-1,1),第3次向上跳動1個單位至點P3,第4次向右跳動3個單位至點P4,第5次又向上跳動1個單位至點P5,第6次向左跳動4個單位至點P6,…….照此規(guī)律,點P第100次跳動至點P100的坐標是( )
A. (-26,50) B. (-25,50) C. (26,50) D. (25,50)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,BE⊥AC于點E,點D在AC上,且AD=AB,AK平分∠CAB,交線段BE于點F,交邊CB于點K.
(1)在圖中找出一對全等三角形,并證明;
(2)求證:FD∥BC .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC中,沿∠BAC的平分線AB1折疊,剪掉重疊部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重疊部分;…;將余下部分沿∠BnAnC的平分線AnBn+1折疊,點Bn與點C重合.無論折疊多少次,只要最后一次恰好重合,我們就稱∠BAC是△ABC的好角.
小麗展示了確定∠BAC是△ABC的好角的兩種情形.情形一:如圖2,沿等腰三角形ABC頂角∠BAC的平分線AB1折疊,點B與點C重合;情形二:如圖3,沿△ABC的∠BAC的平分線AB1折疊,剪掉重疊部分;將余下部分沿∠B1A1C的平分線A1B2折疊,此時點B1與點C重合.
(1)小麗經(jīng)過三次折疊發(fā)現(xiàn)了∠BAC是△ABC的好角,請?zhí)骄?/span>∠B與∠C(不妨設∠B>∠C)之間的等量關系.
(2)根據(jù)以上內(nèi)容猜想:若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C(不妨設∠B>∠C)之間的等量關系為 ;
(3)如果一個三角形的最小角是15°,且滿足該三角形的三個角均是此三角形的好角,則此三角形另兩個角的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于0,1以及真分數(shù)p,q,r,若p<q<r,我們稱q為p和r的中間分數(shù).為了幫助我們找中間分數(shù),制作了下表:
兩個不等的正分數(shù)有無數(shù)多個中間分數(shù).例如:上表中第③行中的3個分數(shù)、、,有,所以為和的一個中間分數(shù),在表中還可以找到和的中間分數(shù), , , .把這個表一直寫下去,可以找到和更多的中間分數(shù).
(1)按上表的排列規(guī)律,完成下面的填空:
①上表中括號內(nèi)應填的數(shù)為 ;
②如果把上面的表一直寫下去,那么表中第一個出現(xiàn)的和的中間分數(shù)是 ;
(2)寫出分數(shù)和(a、b、c、d均為正整數(shù), , )的一個中間分數(shù)(用含a、b、c、d的式子表示),并證明;
(3)若與(m、n、s、 t均為正整數(shù))都是和的中間分數(shù),則的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商家預測一種應季襯衫能暢銷市場,就用13 200元購進了一批這種襯衫,面市后果然供不應求,商家又用28 800元購進了第二批這種襯衫,所購數(shù)量是第一批購進量的2倍,但單價貴了10元.
(1)該商家購進的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完利潤率不低于25%(不考慮其他因素),那么每件襯衫的標價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)若a是(-4)2的平方根,b的一個平方根是2,求式子a+b的立方根;
(2)實數(shù)a,b互為相反數(shù),c,d互為倒數(shù),x的絕對值為,求式子x2+(a+b+cd)x++的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com