在△ABC中,∠A:∠B:∠C=1:2:3,則∠A=    度,∠C=    度.
30°、90°.

試題分析:由三角形內(nèi)角和為180°,根據(jù)三角之比求出各角度數(shù)即可.
試題解析:設(shè)∠A、∠B、∠C的度數(shù)分別為x、2x、3x,則x+2x+3x=180°,解得x=30°
∴3x=90°
∴∠A、∠C的度數(shù)分別為30°、90°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)E,F(xiàn)在BC上,BE=CF,AB=DC,∠B=∠C.
求證:∠A=∠D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,已知∠B=∠C
(1)尺規(guī)作圖:作底角∠ABC的平分線BD,交AC于點(diǎn)D(作圖不寫作法,但保留作圖痕跡);
(2)猜想:“若∠A=36°,則△ABD和△BDC都是等腰三角形”。請(qǐng)你通過計(jì)算說明猜想是否成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC和△DEF中,已知:AC=DF,,BC=EF,要使△ABC△DEF,還需要的條件可以是                            ;(只填寫一個(gè)條件)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在長方形中,,點(diǎn)的中點(diǎn),動(dòng)點(diǎn)點(diǎn)出發(fā),以每秒的速度沿運(yùn)動(dòng),最終到達(dá)點(diǎn).若設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間是秒,那么當(dāng)取何值時(shí),△的面積會(huì)等于10 ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:在△ABC中,∠BAC=90°,AB=AC,AE是過點(diǎn)A的一條直線,且BD⊥AE于D,CE⊥AE于E.
(1)當(dāng)直線AE處于如圖①的位置時(shí),有BD=DE+CE,請(qǐng)說明理由;
(2)當(dāng)直線AE處于如圖②的位置時(shí),則BD、DE、CE的關(guān)系如何?請(qǐng)說明理由;
(3)歸納(1)、(2),請(qǐng)用簡潔的語言表達(dá)BD、DE、CE之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC中,AB=AC,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),點(diǎn)G、F在BC邊上,四邊形DEFG是正方形.若DE=2cm,則AC的長為 ( )

A.cm    B.4cm     C.cm      D.cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若等腰三角形的邊長分別為3和6,則它的周長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下面材料:
小炎遇到這樣一個(gè)問題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC,CD上,∠EAF=45°,連結(jié)EF,則EF=BE+DF,試說明理由.
小炎是這樣思考的:要想解決這個(gè)問題,首先應(yīng)想辦法將這些分散的線段相對(duì)集中.她先后嘗試了翻折、旋轉(zhuǎn)、平移的方法,最后發(fā)現(xiàn)線段AB,AD是共點(diǎn)并且相等的,于是找到解決問題的方法.她的方法是將△ABE繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADG,再利用全等的知識(shí)解決了這個(gè)問題(如圖2).
參考小炎同學(xué)思考問題的方法,解決下列問題:
(1)如圖3,四邊形ABCD中,AB=AD,∠BAD=90°點(diǎn)E,F(xiàn)分別在邊BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,則當(dāng)∠B與∠D滿足_       關(guān)系時(shí),仍有EF=BE+DF;
(2)如圖4,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°,若BD=1, EC=2,求DE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案