【題目】如圖1所示矩形中,,,與滿足的反比例函數(shù)關(guān)系如圖2所示,等腰直角三角形的斜邊過點(diǎn),點(diǎn),分別在,上,為的中點(diǎn),則下列結(jié)論正確的是( )
A.當(dāng)時,
B.當(dāng)時,
C.當(dāng)增大時,的值增大
D.當(dāng)增大時,的值不變
【答案】D
【解析】
由于等腰直角三角形AEF的斜邊EF過C點(diǎn),則△BEC和△DCF都是直角三角形;觀察反比例函數(shù)圖象得反比例解析式為y=;當(dāng)x=3時,y=3,即BC=CD=3,根據(jù)等腰直角三角形的性質(zhì)得CE=3,CF=3,則C點(diǎn)與M點(diǎn)重合;當(dāng)x=9時,根據(jù)反比例函數(shù)的解析式得x=1,即BC=9,CD=1,所以EF=10,而EM=5;利用等腰直角三角形的性質(zhì)BEDF=BCCD=xy,然后再根據(jù)反比例函數(shù)的性質(zhì)得BEDF=9,其值為定值;由于ECCF=x×y=2xy,其值為定值.
因?yàn)榈妊苯侨切?/span>AEF的斜邊EF過C點(diǎn),M為EF的中點(diǎn),所以△BEC和△DCF都是直角三角形;觀察反比例函數(shù)圖象得x=3,y=3,則反比例解析式為y=.
A、當(dāng)x=3時,y=3,即BC=CD=3,所以CE=BC=3,CF=CD=3,C點(diǎn)與M點(diǎn)重合,則EC=EM,所以A選項(xiàng)錯誤;
B、當(dāng)x=9時,y=1,即BC=9,CD=1,所以EC=9,EF=10,EM=5,所以B選項(xiàng)錯誤;
C、因?yàn)?/span>ECCF=xy=2×xy=18,所以,ECCF為定值,所以選項(xiàng)C錯誤;
D、因?yàn)?/span>BEDF=BCCD=xy=9,即BEDF的值不變,所以D選項(xiàng)正確.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點(diǎn),該市旅游部門統(tǒng)計(jì)繪制出2017年“五一”長假期間旅游情況統(tǒng)計(jì)圖,根據(jù)以下信息解答下列問題:
(1)2017年“五一”期間,該市周邊景點(diǎn)共接待游客 萬人,扇形統(tǒng)計(jì)圖中A景點(diǎn)所對應(yīng)的圓心角的度數(shù)是 ,并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預(yù)計(jì)2018年“五一”節(jié)將有80萬游客選擇該市旅游,請估計(jì)有多少萬人會選擇去E景點(diǎn)旅游?
(3)甲、乙兩個旅行團(tuán)在A、B、D三個景點(diǎn)中,同時選擇去同一景點(diǎn)的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的布袋中有完全相同的三個小球,把它們分別標(biāo)號為1,2,3. 小林和小華做一個游戲,按照以下方式抽取小球:先從布袋中隨機(jī)抽取一個小球,記下標(biāo)號后放回布袋中攪勻,再從布袋中隨機(jī)抽取一個小球, 記下標(biāo)號. 若兩次抽取的小球標(biāo)號之和為奇數(shù),小林贏;若標(biāo)號之和為偶數(shù),則小華贏.
(1)用畫樹狀圖或列表的方法,列出前后兩次取出小球上所標(biāo)數(shù)字的所有可能情況;
(2)請判斷這個游戲是否公平,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC中,點(diǎn)D為邊BC上一點(diǎn),點(diǎn)E在邊AC上,且∠ADE=∠B
(1) 如圖1,若AB=AC,求證:;
(2) 如圖2,若AD=AE,求證:;
(3) 在(2)的條件下,若∠DAC=90°,且CE=4,tan∠BAD=,則AB=____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系;折線OBCDA表示轎車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系.請根據(jù)圖象解答下列問題:
(1)當(dāng)轎車剛到乙地時,此時貨車距離乙地 千米;
(2)當(dāng)轎車與貨車相遇時,求此時x的值;
(3)在兩車行駛過程中,當(dāng)轎車與貨車相距20千米時,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線與反比例函數(shù)(>0)的圖象分別交于點(diǎn) A(,4)和點(diǎn)B(8,),與坐標(biāo)軸分別交于點(diǎn)C和點(diǎn)D.
(1)求直線AB的解析式;
(2)觀察圖象,當(dāng)時,直接寫出的解集;
(3)若點(diǎn)P是軸上一動點(diǎn),當(dāng)△COD與△ADP相似時,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),OA=2,OC=6,連接AC和BC.
(1)求拋物線的解析式;
(2)點(diǎn)D在拋物線的對稱軸上,當(dāng)△ACD的周長最小時,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)E是第四象限內(nèi)拋物線上的動點(diǎn),連接CE和BE.求△BCE面積的最大值及此時點(diǎn)E的坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是的外接圓,是的直徑,過的中點(diǎn)作的直徑交弦于點(diǎn),連接、、.
(1)如圖1,若點(diǎn)是線段的中點(diǎn),求的度數(shù);
(2)如圖2,在上取一點(diǎn),使,求證:;
(3)如圖3,取的中點(diǎn),連接并延長交于點(diǎn),連接和交于點(diǎn),若,且,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,線段是⊙的直徑,過點(diǎn)作直線交⊙于、兩點(diǎn),過點(diǎn)作的角平分線交⊙于,過作的垂線交于
(1)證明是⊙的切線
(2)證明
(3)若⊙的直徑為10,,求
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com