【題目】如圖,長(zhǎng)方形紙片ABCD,點(diǎn)E、F分別在邊AB、CD上,連接EF,將∠BEF對(duì)折,點(diǎn)B落在直線(xiàn)EF上的B′處,得到折痕EC,將點(diǎn)A落在直線(xiàn)EF上的點(diǎn)A′處,得到折痕EN.
(1)若∠BEB′=110°,則∠BEC=°,∠AEN=°,∠BEC+∠AEN=°.
(2)若∠BEB′=m°,則(1)中∠BEC+∠AEN的值是否改變?請(qǐng)說(shuō)明你的理由.
(3)將∠ECF對(duì)折,點(diǎn)E剛好落在F處,且折痕與B′C重合,求∠DNA′.
【答案】
(1)55°,35°,90°
(2)解:不變.
由折疊的性質(zhì)可得:∠BEC=∠B'EC,∠AEN=∠A'EN,
∵∠BEB′=m°,
∴∠AEA'=180°﹣m°,
可得∠BEC=∠B'EC= ∠BEB′= m°,∠AEN=∠A'EN= ∠AEA'= (180°﹣m°),
∴∠BEC+∠AEN= m°+ (180°﹣m°)=90°,
故∠BEC+∠AEN的值不變 。
(3)解:由折疊的性質(zhì)可得:∠B'CF=∠B'CE,∠B'CE=∠BCE,
∴∠B'CF=∠B'CE=∠BCE= ×90°=30°,
在Rt△BCE中,
∵∠BEC與∠BCE互余,
∴∠BEC=90°﹣∠BCE=90°﹣30°=60°,
∴∠B'EC=∠BEC=60°,
∴∠AEA'=180°﹣∠BEC﹣∠B'EC=180°﹣60°﹣60°=60°,
∴∠AEN= ∠AEA'=30°,
∴∠ANE=90°﹣∠AEN=90°﹣30°=60°,
∴∠ANE=∠A'NE=60°,
∴∠DNA'=180°﹣∠ANE﹣∠A'NE=180°﹣60°﹣60°=60°
【解析】解:(1)由折疊的性質(zhì)可得,∠BEC=∠B'EC,∠AEN=∠A'EN,
∵∠BEB′=110°,
∴∠AEA'=180°﹣110°=70°,
∴∠BEC=∠B'EC= ∠BEB′=55°,∠AEN=∠A'EN= ∠AEA'=35°.
∴∠BEC+∠AEN=55°+35°=90°;
故答案為:55,35,90.
由折疊的性質(zhì)分別求出∠BEC、∠AEN的度數(shù),然后求出兩角之和。
(2) 根據(jù)折疊的性質(zhì)得出∠BEC=∠B'EC,∠AEN=∠A'EN,根據(jù)已知用含m的代數(shù)式表示出∠AEA',再分別表示出∠BEC,∠AEN,再求和即可得出結(jié)論。
(3) 根據(jù)折疊的性質(zhì)求出∠B'CF=∠B'CE=∠BCE=30°,然后在Rt△BCE中,根據(jù)直角三角形的性質(zhì)求出∠BEC的度數(shù),然后再根據(jù)折疊的性質(zhì)及平角的性質(zhì)求解。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】手電筒發(fā)射出來(lái)的光線(xiàn),類(lèi)似于幾何中的( )
A. 線(xiàn)段 B. 射線(xiàn) C. 直線(xiàn) D. 折線(xiàn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=15,BC=8,E是AB上一點(diǎn),沿DE折疊使A落在DB上,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】Rt△ABC中,∠BAC=90°,AB=AC=2.以AC為一邊,在△ABC外部作等腰直角三角形ACD,則線(xiàn)段BD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形具有而菱形不具有的性質(zhì)是( )
A.兩組對(duì)邊分別平行B.對(duì)角線(xiàn)互相垂直
C.對(duì)角線(xiàn)相等D.兩組對(duì)角分別相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是長(zhǎng)方形,△DCE是等邊三角形,A(0,0),B(4,0),D(0,2),求E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角尺如圖①擺放(在Rt△ABC中,∠ACB=90°,∠B=60°.Rt△DEF中,∠EDF=90°,∠E=45°).點(diǎn)D為AB的中點(diǎn),DE交AC于點(diǎn)P,DF經(jīng)過(guò)C,且BC=2.
(1)求證:△ADC∽△APD;
(2)求△APD的面積;
(3)如圖②,將△DEF繞點(diǎn)D順時(shí)針?lè)较蛐D(zhuǎn)角(0°<<60°),此時(shí)的等腰直角三角尺記為△DE′F′,DE′交AC于點(diǎn)M,DF′交BC于點(diǎn)N,試判斷的值是否會(huì)隨著的變化而變化,如果不變,請(qǐng)求出的值;反之,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(2,4)、B(-4, )兩點(diǎn).
(1)分別求出一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)根據(jù)所給條件,請(qǐng)直接寫(xiě)出不等式>的解集;
(3)過(guò)點(diǎn)B作BC⊥x軸,垂足為C,連接AC,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+bx經(jīng)過(guò)A(2,0),B(3,-3)兩點(diǎn),拋物線(xiàn)的頂點(diǎn)為C,動(dòng)點(diǎn)P在直線(xiàn)OB上方的拋物線(xiàn)上,過(guò)點(diǎn)P作直線(xiàn)PM∥y軸,交x軸于M,交OB于N,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線(xiàn)的解析式及點(diǎn)C的坐標(biāo);
(2)當(dāng)△PON為等腰三角形時(shí),點(diǎn)N的坐標(biāo)為 ;當(dāng)△PMO∽△COB時(shí),點(diǎn)P的坐標(biāo)為 ;(直接寫(xiě)出結(jié)果)
(3)直線(xiàn)PN能否將四邊形ABOC分為面積比為1:2的兩部分?若能,請(qǐng)求出m的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com