某商人如果將進貨價為8元的商品按每件10元出售,每天可銷售100件,現(xiàn)采用提高售出價,減少進貨量的辦法增加利潤,已知這種商品每漲價0.5元其銷售量就要減少10件,問他將售出價定為多少元時,才能使每天所賺的利潤最大?并求出最大利潤
(1)解:將點C(0,-3)的坐標代入二次函數(shù)y=a(x2-2mx-3m2),
則-3=a(0-0-3m2),
解得 a=.
(2)證明:如圖,
過點D,E分別作x軸的垂線,垂足為M,N.
由a(x2-2mx-3m2)=0,
解得 x1=-m,x2=3m,
∴ A(-m,0),B(3m,0).
∵ CD∥AB,
∴ 點D的坐標為(2m,-3).
∵ AB平分∠DAE,
∴∠DAM=∠EAN.
∵ ∠DMA=∠ENA=90°,
∴ △ADM∽△AEN.
∴.
設點E的坐標為 ,
∴=,
∴ x=4m,∴ E(4m,5).
∵ AM=AO+OM=m+2m=3m,AN=AO+ON=m+4m=5m,
∴ ,即為定值.
(3)解:如圖所示,
記二次函數(shù)圖象的頂點為點F,則點F的坐標為(m,-4),
過點F作FH⊥x軸于點H.
連接FC并延長,與x軸負半軸交于一點,此點即為所求的點G.
∵ tan∠CGO=,tan∠FGH=,∴=,
∴ OG=3m.
此時,GF===4,
AD===3,∴=.
由(2)得=,∴ AD︰GF︰AE=3︰4︰5,
∴ 以線段GF,AD,AE的長度為三邊長的三角形是直角三角形,
此時點G的橫坐標為3m.
科目:初中數(shù)學 來源: 題型:
如圖,已知二次函數(shù)的圖像與x軸交于點A、B,與y軸交于點C,頂點坐標為D.則△ABC與△ABD的面積之比是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com