分析 連接BD,根據(jù)勾股定理求出BD的長(zhǎng),根據(jù)勾股定理的逆定理判斷△BDC是直角三角形,根據(jù)直角三角形的面積公式計(jì)算即可.
解答 解:連接BD,
∵∠A=90°,AB=2cm,AD=$\sqrt{5}$cm,
∴BD=$\sqrt{A{B}^{2}+A{D}^{2}}$=3cm,△ABD的面積為:$\frac{1}{2}$×AB×AD=$\sqrt{5}$cm2,
∵BD2+BC2=25,CD2=25,
∴BD2+BC2=CD2,
∴∠BDC=90°,
∴△BDC的面積為:$\frac{1}{2}$×BD×BC=6cm2,
∴四邊形ABCD的面積=△ABD的面積+△BDC的面積=(6+$\sqrt{5}$)cm2.
點(diǎn)評(píng) 本題考查的是勾股定理和勾股定理的逆定理的應(yīng)用,在任何一個(gè)直角三角形中,兩條直角邊長(zhǎng)的平方之和一定等于斜邊長(zhǎng)的平方.如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y1>y2 | B. | y1=y2 | C. | y1<y2 | D. | 不能比較 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
時(shí)間x | 7:00 | 7:02 | 7:05 | 7:07 | 7:10 | 7:14 | 7:20 |
水溫y | 30℃ | 50℃ | 80℃ | 100℃ | 70℃ | 50℃ | 35℃ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | |-2| | B. | -22 | C. | -(-2) | D. | $\sqrt{(-2)^{2}}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com