【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過(guò)點(diǎn)C的直線(xiàn)與AB的延長(zhǎng)線(xiàn)交于點(diǎn)P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線(xiàn);
(2)求證:BC= AB;
(3)點(diǎn)M是 的中點(diǎn),CM交AB于點(diǎn)N,若AB=4,求MNMC的值.
【答案】
(1)解:證明:∵OA=OC,
∴∠A=∠ACO.
又∵∠COB=2∠A,∠COB=2∠PCB,
∴∠A=∠ACO=∠PCB.
又∵AB是⊙O的直徑,
∴∠ACO+∠OCB=90°.
∴∠PCB+∠OCB=90°.
即OC⊥CP,
∵OC是⊙O的半徑.
∴PC是⊙O的切線(xiàn).
(2)解:證明:∵AC=PC,
∴∠A=∠P,
∴∠A=∠ACO=∠PCB=∠P.
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,
∴∠COB=∠CBO,
∴BC=OC.
∴BC= AB.
(3)解:連接MA,MB,
∵點(diǎn)M是 的中點(diǎn),
∴ ,
∴∠ACM=∠BCM.
∵∠ACM=∠ABM,
∴∠BCM=∠ABM.
∵∠BMN=∠BMC,
∴△MBN∽△MCB.
∴ .
∴BM2=MNMC.
又∵AB是⊙O的直徑, ,
∴∠AMB=90°,AM=BM.
∵AB=4,
∴BM=2 .
∴MNMC=BM2=8.
【解析】(1)已知點(diǎn)C在圓上,故只需證明OC與PC垂直即可,根據(jù)圓周角定理,得∠PCB+∠OCB=90°.即OC⊥CP,故PC是⊙O的切線(xiàn);(2)AB事直徑,故只需證明BC與半徑相等即可;(3)連接MA,MB,由圓周角定理可得∠ACM=∠BCM.進(jìn)而可證△MBN∽△MCB.故BM2=MNMC.代入數(shù)據(jù)可得MNMC=BM2=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是反比例函數(shù)y1= (x>0)圖象上一點(diǎn),過(guò)點(diǎn)A作x軸的平行線(xiàn),交反比例函數(shù)y2= (x>0)的圖象于點(diǎn)B,連接OA,OB,若△OAB的面積為2,則k2﹣k1的值為( )
A.﹣2
B.2
C.﹣4
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校計(jì)劃購(gòu)買(mǎi)甲、乙兩種圖書(shū)作為“校園讀書(shū)節(jié)”的獎(jiǎng)品,已知甲種圖書(shū)的單價(jià)比乙種圖書(shū)的單價(jià)多10元,且購(gòu)買(mǎi)3本甲種圖書(shū)和2本乙種圖書(shū)共需花費(fèi)130元
(1)甲、乙兩種圖書(shū)的單價(jià)分別為多少元?
(2)學(xué)校計(jì)劃購(gòu)買(mǎi)這兩種圖書(shū)共50本,且投入總經(jīng)費(fèi)不超過(guò)1200元,則最多可以購(gòu)買(mǎi)甲種圖書(shū)多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某農(nóng)場(chǎng)有A、B兩種型號(hào)的收割機(jī)共20臺(tái),每臺(tái)A型收割機(jī)每天可收大麥100畝或者小麥80畝,每臺(tái)B型收割機(jī)每天可收大麥80畝或者小麥60畝,該農(nóng)場(chǎng)現(xiàn)有19 000畝大麥和11 500畝小麥先后等待收割.先安排這20臺(tái)收割機(jī)全部收割大麥,并且恰好10天時(shí)間全部收完.
(1)問(wèn)A、B兩種型號(hào)的收割機(jī)各多少臺(tái)?
(2)由于氣候影響,要求通過(guò)加班方式使每臺(tái)收割機(jī)每天多完成10%的收割量,問(wèn)這20臺(tái)收割機(jī)能否在一周時(shí)間內(nèi)完成全部小麥?zhǔn)崭钊蝿?wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD∥BC,∠B=∠D=50°,點(diǎn)E、F在BC上,且滿(mǎn)足∠CAD=∠CAE,AF平分∠BAE.
(1)∠CAF= °;
(2)若平行移動(dòng)CD,那么∠ACB與∠AEB度數(shù)的比值是否隨之發(fā)生變化?若變化,試說(shuō)明理由;若不變,求出這個(gè)比值;
(3)在平行移動(dòng)CD的過(guò)程中,是否存在某種情況,使∠AFB=∠ACD?若存在,求出∠ACD度數(shù);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,AB=4cm,AD=6cm,延長(zhǎng)AB到E,使BE=2AB,連接CE,動(dòng)點(diǎn)F從A出發(fā)以2cm/s的速度沿AE方向向點(diǎn)E運(yùn)動(dòng),動(dòng)點(diǎn)G從E點(diǎn)出發(fā),以3cm/s的速度沿E→C→D方向向點(diǎn)D運(yùn)動(dòng),兩個(gè)動(dòng)點(diǎn)同時(shí)出發(fā),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止,設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),F(xiàn)C與EG互相平分;
(2)連接FG,當(dāng)t< 時(shí),是否存在時(shí)間t使△EFG與△EBC相似?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
(3)設(shè)△EFG的面積為y,求出y與t的函數(shù)關(guān)系式,求當(dāng)t為何值時(shí),y有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知∠MON=60°,A、B兩點(diǎn)同時(shí)從點(diǎn)O出發(fā),點(diǎn)A以每秒x個(gè)單位長(zhǎng)度沿射線(xiàn)ON勻速運(yùn)動(dòng),點(diǎn)B以每秒y個(gè)單位長(zhǎng)度沿射線(xiàn)OM勻速運(yùn)動(dòng).
(1)若運(yùn)動(dòng)1s時(shí),點(diǎn)A運(yùn)動(dòng)的路程比點(diǎn)B運(yùn)動(dòng)路程的2倍還多1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)3s時(shí),點(diǎn)A、點(diǎn)B的運(yùn)動(dòng)路程之和為12個(gè)單位長(zhǎng)度,則x=____,y=____;
(2)如圖2,點(diǎn)C為△ABO三條內(nèi)角平分線(xiàn)交點(diǎn),連接BC、AC,在點(diǎn)A、B的運(yùn)動(dòng)過(guò)程中,∠ACB的度數(shù)是否發(fā)生變化?若不發(fā)生變化,求其值;若發(fā)生變化,請(qǐng)說(shuō)明理由;
(3)如圖3,在(2)的條件下,連接OC并延長(zhǎng),與∠ABM的角平分線(xiàn)交于點(diǎn)P,與AB交于點(diǎn)Q.
①試說(shuō)明∠PBQ=∠ACQ;
②在△BCP中,如果有一個(gè)角是另一個(gè)角的2倍,請(qǐng)直接寫(xiě)出∠BAO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在筆直的道路AB上相向而行,甲騎自行車(chē)從A地到B地,乙駕車(chē)從B地到A地,假設(shè)他們分別以不同的速度勻速行駛,甲先出發(fā)6分鐘后,乙才出發(fā),在整個(gè)過(guò)程中,甲、乙兩人之間的距離y(千米)與甲出發(fā)的時(shí)間x(分)之間的函數(shù)圖象如圖.
(1)A地與B地相距______km,甲的速度為______km/分;
(2)求甲、乙兩人相遇時(shí),乙行駛的路程;
(3)當(dāng)乙到達(dá)終點(diǎn)A時(shí),甲還需多少分鐘到達(dá)終點(diǎn)B?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠準(zhǔn)備購(gòu)買(mǎi)A、B兩種零件,已知A種零件的單價(jià)比B種零件的單價(jià)多30元,而用900元購(gòu)買(mǎi)A種零件的數(shù)量和用600元購(gòu)買(mǎi)B種零件的數(shù)量相等.
(1)求A、B兩種零件的單價(jià);
(2)根據(jù)需要,工廠準(zhǔn)備購(gòu)買(mǎi)A、B兩種零件共200件,工廠購(gòu)買(mǎi)兩種零件的總費(fèi)用不超過(guò)14700元,求工廠最多購(gòu)買(mǎi)A種零件多少件?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com