下表給出了代數(shù)式x2+bx+c與x的一些對應(yīng)值:
x-11234
X2+bx+c 3 -1 3
(1)根據(jù)表格中的數(shù)據(jù),確定b、c的值,并填齊表格中空白處的對應(yīng)值;
(2)代數(shù)式x2+bx+c是否有最小值?如果有,求出最小值;如果沒有,請說明理由;
(3)設(shè)y=x2+bx+c的圖象與x軸的交點為A、B兩點(A點在B點左側(cè)),與y軸交于點C,P點為線段AB上一動點,過P點作PE∥AC交BC于E,連接PC,當△PEC的面積最大時,求P點的坐標.
【答案】分析:(1)根據(jù)圖表中已知的三組數(shù)據(jù),用待定系數(shù)法即可求出b、c的值;進而可由拋物線的解析式填齊空白處的對應(yīng)值;
(2)根據(jù)(1)所得函數(shù)的解析式,可用配方法或公式法求出其最小值;
(3)由于△PEC的面積無法直接得出,所以要轉(zhuǎn)化為其他圖形面積的和差來解;可設(shè)出P點的坐標,過E作EM⊥x軸于M,易證得△BPE∽△BAC,那么它們的對應(yīng)高等于相似比,由此可求出EM的表達式;那么△PEC的面積可由△ABC、△BPE、△APC的面積差求得,也就得到了關(guān)于△PEC的面積與P點橫坐標的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求出S的最大值及對應(yīng)的P點坐標.
解答:解:(1)由題意知:
解得b=-4(1分)
x-11234
X2+bx+c 83 0-1 03
(2)∵x2-4x+3=(x-2)2-1≥-1
∴x2-4x+3有最小值,最小值為-1;(3分)

(3)由(1)可知,點A、B的坐標分別為(1,0),(3,0)、設(shè)點P的坐標為(x,0),過點E作EM⊥x軸于點M,
∵PE∥AC,∴△EPB∽△CAB
∵EM、CO分別為△EPB與△CAB邊上的高,
(4分)
∵CO=3,AB=2,PB=3-x,∴(5分)
∴S△PEC=S△PBC-S△PBE=PB•CO-PB•EM(6分)
==(7分)
∴當x=2時,S有最大值;
∴當點P的坐標為(2,0)時,△PEC的面積最大.(8分)
點評:此題主要考查了用待定系數(shù)法求二次函數(shù)解析式、相似三角形的判定和性質(zhì)、圖形面積的求法及二次函數(shù)的應(yīng)用等,綜合性較強,難度偏大.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

下表給出了代數(shù)式x2+bx+c與x的一些對應(yīng)值:
     x  …  0  1  2
 x2+bx+c  …  3   -1    3
(1)請在表內(nèi)的空格中填入適當?shù)臄?shù);
(2)設(shè)y=x2+bx+c,則當x取何值時,y>0;
(3)請說明經(jīng)過怎樣平移函數(shù)y=x2+bx+c的圖象得到函數(shù)y=x2的圖象?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下表給出了代數(shù)式x2+bx+c與x的一些對應(yīng)值:
x -1 0 1 2 3 4
x2+bx+c 3 -1 3
(1)根據(jù)表格中的數(shù)據(jù),確定b、c的值,并填齊表格空白處的對應(yīng)值;
(2)設(shè)y=x2+bx+c的圖象與x軸的交點為A、B兩點(A點在B點左側(cè)),與y軸交于點C,P為線段AB上一動點,過P點作PE∥AC交BC于E,連接PC,當△PEC的面積最大時,求P點的坐標.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、下表給出了代數(shù)式x2+bx+c與x的一些對應(yīng)值:
x 0 1 2 3 4
x2+bx+c 3 -1 3
(1)求b,c的值;
(2)設(shè)y=x2+bx+c,當x取何值時,y隨x的增大而增大?
(3)函數(shù)y=x2+bx+c的圖象經(jīng)過怎樣平移可得到函數(shù)y=x2的圖象?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下表給出了代數(shù)式x2+bx+c與x的一些對應(yīng)值:
x -1 0 1 2 3 4
X2+bx+c   3   -1   3
(1)根據(jù)表格中的數(shù)據(jù),確定b、c的值,并填齊表格中空白處的對應(yīng)值;
(2)代數(shù)式x2+bx+c是否有最小值?如果有,求出最小值;如果沒有,請說明理由;
(3)設(shè)y=x2+bx+c的圖象與x軸的交點為A、B兩點(A點在B點左側(cè)),與y軸交于點C,P點為線段AB上一動點,過P點作PE∥AC交BC于E,連接PC,當△PEC的面積最大時,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下表給出了代數(shù)式x2+bx+c與x的一些對應(yīng)值:
x 0 1 2 3 4
x2+bx+c 3 -1 3
函數(shù)y=x2的圖象可以通過平移得到函數(shù)y=x2+bx+c的圖象.請寫出一種正確的平移
 

查看答案和解析>>

同步練習冊答案