精英家教網 > 初中數學 > 題目詳情

【題目】某樓盤準備以每平方米6000元的均價對外銷售,由于國務院有關房地產的新政策出臺后,購房者持幣觀望,房地產開發(fā)商為了加快資金周轉,對價格經過兩次下調后,決定以每平方米4 860元的均價開盤銷售.
(1)求平均每次下調的百分率.
(2)某人準備以開盤價均價購買一套100平方米的住房,開發(fā)商給予以下兩種優(yōu)惠方案以供選擇:①打9.8折銷售;②不打折,一次性送裝修費每平方米80元,試問哪種方案更優(yōu)惠?

【答案】
(1)解:設平均每次下調的百分率為 ,則

,解得: , (舍去)

∴ 平均每次下調的百分率為10%


(2)解:方案①可優(yōu)惠:4860×100×(1-0.98)=9720(元),

方案②可優(yōu)惠:100×80=8000(元),∴ 方案①更優(yōu)惠.


【解析】(1)設平均每次下調的百分率為 x,這是一道平均降低率的問題,利用公式a(1-x)n=p,(其中a是降低開始的量,n是降低次數,p是降低結束達到的量)列出方程求解檢驗即可;
(2)分別計算出方案①可優(yōu)惠的錢數與方案②可優(yōu)惠的錢數,再進行比較即可得出結論。

【考點精析】認真審題,首先需要了解直接開平方法(方程沒有一次項,直接開方最理想.如果缺少常數項,因式分解沒商量.b、c相等都為零,等根是零不要忘.b、c同時不為零,因式分解或配方,也可直接套公式,因題而異擇良方).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖①,△ABC中,∠ACB=90°,AC=3BC=3,如圖,將△ABC沿一條直線折疊,使得點A與點C重合

(1)在圖中畫出折痕所在的直線l,設直線lAB,AC分別相交于點DE(尺規(guī)作圖,不寫作法,保留作圖痕跡)

(2)如圖,求△CDB的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我國宋朝數學家楊輝在他的著作《詳解九章算術》中提出下表,此表揭示了(n為非負整數)展開式的各項系數的規(guī)律,例如:

(a+b)01,它只有一項,系數為1

(a+b)1a+b,它有兩項,系數分別為1,1

(a+b)2a2+2ab+b2,它有三項,系數分別為1,21;

(a+b)3a3+3a2b+3ab2+b3,它有四項,系數分別為1,3,3,1;

根據以上規(guī)律,(a+b)6展開式共有______項,各項系數的和等于______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,分別用火柴棍連續(xù)搭建正三角形和正方形,公共邊只用一根火柴棍.

1)連續(xù)搭建個三角形需要火柴根________根,連續(xù)搭建個正方形需要火柴根________根;

2)若搭建正三角形和正方形共用了2018根火柴棍,正三角形的個數比正方形的個數多3個,則搭建的正三角形個數是________,正方形的的個數是________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某地區(qū)為進一步發(fā)展基礎教育,自年以來加大了教育經費的投入,年該地區(qū)投入教育經費萬元,年投入教育經費萬元.

(1)求該地區(qū)這兩年投入教育經費的年平均增長率;

(2)若該地區(qū)教育經費的投入還將保持相同的年平均增長率,請預算年該地區(qū)投入教育經費為 萬元.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:拋物線y=- +bx+c與x軸交于A、B兩點,與y軸交于點C,且∠BAC=α,∠ABC= ,tanα-tanβ=2,∠ACB=90°.

(1)求點C的坐標;
(2)求拋物線的解析式;
(3)若拋物線的頂點為P,求四邊形ABPC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,動點P從點B出發(fā)沿射線BC1cm/s的速度移動,設運動的時間為ts.

(1)求BC邊的長;

(2)當△ABP為直角三角形時,求t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中, 的三個頂點坐標分別為A(2,-4),B(3,-2), C(6,-3).

①畫出△ABC關于 軸對稱的△A1B1C1
②以M點為位似中心,在網格中畫出△A1B1C1的位似圖形△A2B2C2 , 使△A2B2C2與△A1B1C1的相似比為2︰1.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中, 的三個頂點坐標分別為A(2,-4),B(3,-2), C(6,-3)

①畫出△ABC關于x軸對稱的△A1B1C1;
②以M點為位似中心,在網格中畫出△A1B1C1的位似圖形△A2B2C2 , 使△A2B2C2與△A1B1C1的相似比為2:1.

查看答案和解析>>

同步練習冊答案