【題目】一塊三角形廢料如圖所示,∠A=30°,∠C=90°,BC=6.用這塊廢料剪出一個(gè)平行四邊形AGEF,其中,點(diǎn)G,E,F(xiàn)分別在AB,BC,AC上.設(shè)CE=x

(1)求x=2時(shí),平行四邊形AGEF的面積.

(2)當(dāng)x為何值時(shí),平行四邊形AGEF的面積最大?最大面積是多少?

【答案】9(平方單位)

【解析】設(shè)平行四邊形AGEF的面積是S.利用平行四邊形AGEF的對(duì)邊互相平行知EF∥AG,所以同位角∠A=∠CFE=30°;然后在直角三角形ABC和直角三角形BEF中利用銳角三角函數(shù)的定義求得CF、AC的長(zhǎng)度,從而求得平行四邊形AGEF的底邊AF=AC-CF;最后根據(jù)平行四邊形的面積公式S=底×高得出關(guān)于S與x的函數(shù)關(guān)系式S=-x2+6x;

(1)將x=2代入S與x的函數(shù)關(guān)系式S=-x2+6x,并求解即可;

(2)利用配方法求二次函數(shù)的最值.

解:設(shè)平行四邊形AGEF的面積是S.

∵四邊形AGEF是平行四邊形,

∴EF∥AG;

∵∠A=30°,∠C=90°,CE=x,BC=6,

∴∠A=∠CFE=30°,

∴CF=x,AC=6,

∴AF=6x;

∴S=AFCE=(6x)x=﹣x2+6x,即S=﹣x2+6x;

(1)當(dāng)x=2時(shí),S=﹣4+12=8,即S=8

答:平行四邊形AGEF的面積為8(平方單位)

(2)由S=﹣x2+6x,得S=-x2+6x,

∴S=-(x-3)2+9,

∴當(dāng)x=3時(shí),平行四邊形AGEF的面積最大,最大面積是9(平方單位)

“點(diǎn)睛”本題考查了平行四邊形的性質(zhì)、二次函數(shù)的最值.解答本題的關(guān)鍵是求出平行四邊形AGEF的底邊AF、底邊上的高線CE的長(zhǎng)度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖①是一面矩形彩旗完全展平時(shí)的尺寸圖(單位:cm).其中矩形ABCD是由雙層白布縫制的穿旗桿用的旗褲,陰影部分DCEF為矩形綢緞旗面.

(1)用經(jīng)加工的圓木桿穿入旗褲作旗桿,求旗桿的最大直徑(精確到1cm);
(2)將穿好彩旗的旗桿垂直插在操場(chǎng)上,旗桿從旗頂?shù)降孛娴母叨葹?20cm.在無(wú)風(fēng)的天氣里,彩旗自然下垂,如圖②.求彩旗下垂時(shí)最低處離地面的最小高度h.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a+b=3,ab=2,則a2+b2的值為( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),AOB=45°,點(diǎn)P、Q分別是邊OA,OB上的兩點(diǎn),且OP=2cm.將O沿PQ折疊,點(diǎn)O落在平面內(nèi)點(diǎn)C處.

(1)當(dāng)PCQB時(shí),OQ

當(dāng)PCQB時(shí),求OQ的長(zhǎng).

(2)當(dāng)折疊后重疊部分為等腰三角形時(shí),求OQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】搬進(jìn)新居后,小杰自己動(dòng)手用彩塑紙做了一個(gè)如圖所示的正方形的掛式小飾品ABCD,彩線BD.AN.CM將正方形ABCD分成六部分,其中M是AB的中點(diǎn),N是BC的中點(diǎn),AN與CM交于O點(diǎn).已知正方形ABCD的面積為576cm2 , 則被分隔開(kāi)的△CON的面積為( 。
A.96cm2
B.48cm2
C.24cm2
D.以上都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:①直線AB和直線BA是同一條直線;②平角是一條直線;③兩點(diǎn)之間,線段最短;④如果AB=BC,則點(diǎn)B是線段AC的中點(diǎn).其中正確的有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,∠B=60°,AB=4,則以AC為邊的正方形ACEF的周長(zhǎng)為(  )

A.14
B.15
C.16
D.17

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠CAB交CD于E,交CB于F,且EG∥AB交CB于G,則CF與GB的大小關(guān)系是( )

A.CF>GB
B.GB=CF
C.CF<GB
D.無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=CB,∠ABC=90°,F(xiàn)為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC上,且AE=CF

(1)求證:Rt△ABE≌Rt△CBF;
(2)若∠CAE=30。 , 求∠ACF的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案